

MIN Faculty Department of Informatics

Genetic Algorithms for Smooth Path Planning

Sophia Zell

University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems

19. November 2019

Outline

- 1. Motivation
- 2. Path Planning Smoothness
- 3. B-Splines for Smoothing
- 4. Genetic Algorithms
- 5. Probabilistic Roadmaps vs. GAs for PP
- 6. GAs for Smooth PP
- 7. Conclusion and Outlook
- 8. References

Where am I now? Localization. Where do I want to go? Mapping. How do I get there? Motion/Path Planning

Position and goal are known -> best way?

Basic conditions:

Avoid obstacles

- Reduce path length
- Additional features

Major concern:

- Efficiency (Time and energy)
- Safety (Obstacle avoidance)
- Accuracy (Follow path)

Path Planning (continued)

Motivation Path Planning B-Splines for Smoothing Genetic Algorithms Probabilistic Roadmaps vs. GAs for PP GAs for Smooth PP Conclusion

Various categories for PP: Based on environment:

- Static
- Dynamic

Based on map knowledge:

- Global
- Local

Based on completeness:

- Exact
- Heuristic

Path Planning (continued)

Motivation Path Planning B-Splines for Smoothing Genetic Algorithms Probabilistic Roadmaps vs. GAs for PP GAs for Smooth PP Conclusion

- PP problem components:
 - Geometry of robot
 - Environment
 - Degrees of freedom (of robot motion)
 - Start and goal configuration
- + simplify search

Define a configuration space:

- Robot mapped as point
- Environment is a 2D plane

Why?

- More natural
- Less problems with overshooting
- Energy and time efficient

Definition:

Trajectory is smooth if its first and second derivative are continuous.

B-Splines for Smoothing

Motivation Path Planning B-Splines for Smoothing Genetic Algorithms Probabilistic Roadmaps vs. GAs for PP GAs for Smooth PP Conclusio

"Splines [...] are functions consisting of pieces of smooth functions glued together in a certain smooth way." A. Kunoth, T. Lyche, G. Sangalli, S.

Serra-Capizzano, T. Lyche, C. Manni, and H. Speleers, (2018). "Splines and PDEs: From approximation theory to numerical linear algebra." Cham, Switzerland: Springer, p. 1

- Piecewise polynomials
- Globally smooth
- More flexible than regular interpolation through piecewise definition
- Connection points are called knots
- Powerful (for computer-aided geometry)

- Population of solutions
- Chromosome

1 0 0 1 1 1 0 0 0 0

Gene

1

- Initialization
- Parent Selection
- Recombination (Crossover)

Parents:

Genetic Algorithms (continued)

- Fitness function
- Survivor selection
- Stopping criterion

	PRM	GA		
Environment	Free configuration space	Discretized or continuous configuration space		
Initialising way	Generate random configurations Build roadmap R by interconnecting configurations locally Connect initial and goal configuration to R	Create chromosomes from random grid cells First gene is start Last gene is goal		
Finding way	Search edges of R for continuous path from initial to goal config.	Perform genetic algorithm Evaluate fitness function based on pathlength		

	PRM	GA
Pros	Probabilistic complete Easy to implement	Always reach (near) global optimum Don't get stuck in local optima Explore while preserving best Simultaneous search
	Computationally cheap	For continuous or discrete config. space Good performance in complex environment Versatile
Cons		Computationally expensive Tuning necessary

Instead of smoothing a path afterwards (e.g. with B-Splines), we generate a smooth path.

	Regular GA	Bézier GA
Generate	way points	Bézier control points
Path	connected way points	Bézier curve
Fitness function	length of way	length of Bézier curve
Obstacles	collide when point or part of path between two points intersects	collide when Bézier curve intersects

GAs for Smooth PP (continued)

Motivation Path Planning B-Splines for Smoothing Genetic Algorithms Probabilistic Roadmaps vs. GAs for PP GAs for Smooth PP Conclusion

Regular GA:

S 0	1	2	3	4	5	6	7	8	9
10	. 11	12	13	14	15	16	17	18	19
20	31	22	23	24	25	26	27	28	29
30	31	32	33	34	35	36	37	38	39
40	41	42	43	44	45	46	47	48	49
50	51	42	53	54	55	56	57	58	59
60	61	62	63	64	65	66	67	68	69
70	71	72	73	74	75	76	77	78	79
80	81	82	83	84	85	86	87	88	89
90	91	92	93	94	95	96	97	98	99 T

Source: A. Tuncer and M. Yildirim (2012) "Dynamic path planning of mobile robots with improved genetic algorithm" in Computers and Electrical Engineering,

Vol. 38, pp. 1564–1572 GA with Bézier:

Source: M. Elhoseny, A. Shehab and X. Yuan (2017) "Optimizing robot path in dynamic environments using Genetic Algorithm and Bezier Curve", in Journal of Intelligent and Fuzzy Systems, Vol. 33, pp. 2305–2316

Conclusion:

- PRMs are simple and sufficient
- ► Together with B-splines it can produce smooth paths
- GAs are powerful tools for finding (near) optimal path in a complex environment
- Incorpoarted with Bézier curve promising for smooth path generation

Outlook:

- Investigate possible problems of GAs for Smooth PP
- Is the extra effort worth it?

A. E. Eiben and J. E. Smith, (2015) "Introduction to Evolutionary Computing", in Plastics, 2nd ed., G. Rozenberg, Ed. Berlin: Springer, pp. 99–100.

M. Elhoseny, A. Shehab and X. Yuan (2017) "Optimizing robot path in dynamic environments using Genetic Algorithm and Bezier Curve", in Journal of Intelligent and Fuzzy Systems, Vol. 33, pp. 2305–2316

H. Eren, C.C. Fung and J. Evans (1999) "Implementation of the spline method for mobile robot path control", in Proceedings of the 1999 16th IEEE Instrumentation and Measurement Technology Conference, pp. 739–744.

L. Kavraki, M. Kolountzakis and J. Latombe (1998) "Analysis of probabilistic roadmaps for path planning", in IEEE Transactions on Robotics and Automation, 14(1), pp.166–171.

A. Kunoth, T. Lyche, G. Sangalli, S. Serra-Capizzano, T. Lyche, C. Manni, and H. Speleers, (2018). "Splines and PDEs: From approximation theory to numerical linear algebra." Cham, Switzerland: Springer, pp. 1–13

B. Song, Z. Wang and L. Sheng (2016) "A new genetic algorithm approach to smooth path planning for mobile robots" in Assembly Automation, Vol. 36 Issue 2, pp. 138–145

A. Tuncer and M. Yildirim (2012) "Dynamic path planning of mobile robots with improved genetic algorithm" in Computers and Electrical Engineering, Vol. 38, pp. 1564–1572

J. Zhang and L. Einig (2018) "Introduction to Robotics, Lecture 6"

J. Zhang and L. Einig (2018) "Introduction to Robotics, Lecture 7"

S. Zell - Genetic Algorithms for Smooth Path Planning