Collision Avoidance in Micro Aerial Vehicles Motion Planning

12 November 2018 Glareh Mir

Structure of Presentation

- Introduction: History and Background
- Motivation
- Control Methods
 - Backgrounds
 - Designs
- Discussion
- Conclusion
- References
- Questions

Introduction

- Unmanned Aerial Vehicles
 - o ...
 - Micro UAV (MAV)
 - Usage
 - Limitations
- Concerns
 - Navigation
 - Path planning
 - Collision
 - Detection
 - Avoidance
- Drone Swarms

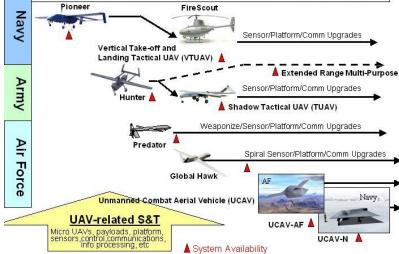


Fig 1: UAV Evolution Source: https://fas.org/irp/program/collect/uav.htm

G. Mir - Collision Avoidance in MAV Motion Planning

2015

Motivation

- Constraints... or what lead us to use swarms
 - Short flight times due to battery limitation
 - Size constraints
- Approaches
 - Collision-free Trajectory
 - Pre-planned
 - Replanning costs
 - Robust methods to avoid multi-MAVs collisions
 - Leader-Follower Formation Control
 - Nonlinear Model Predictive Control

Leader-Follower Formation Control

- Incorporating FTC capabilities
- Eliminating Collisions
 - Environment
 - Inter-formation
- Mechanisms
 - Fault Tolerant Control (FTC)
 - Collision Avoidance
- Useful info
 - Outer-Loop UAV Kinematics
 - Inner-Loop UAV Model Subject to Actuator Faults

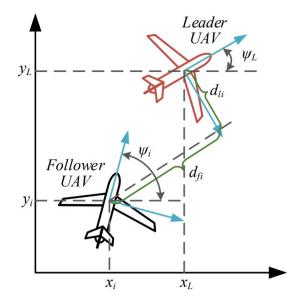


Fig 2: Formation Geometry [1]

Leader-Follower Formation Controller Design

- Outer-Loop Controller Design
 - Rigid Formation Control Strategy
 - Semi-Rigid Formation Strategy
- Inner-Loop Controller Design
 - Direct Adaptive Control method in case of Actuator Faults
 - State Feedback State Tracking (SFST) adaptive control
 - Adaptive Feedback Control law

Fig 2: Formation Geometry [1]

Nonlinear Model Predictive Control

- "Unified framework to achieve reference trajectory tracking and multi-agent reactive collision avoidance" ([2] Kamel 2017, Page 1)
- MPC based Control
 - Forecast based on a dynamic model of the system
 - Solve a finite horizon optimization control problem
 - Most often Linear
 - Non-optimal in a multi-variable nonlinear system
- For a robust collision avoidance
 - State estimator uncertainty
 - Communication delay

Nonlinear Model Predictive Control

- Models
 - System Model
 - Attitude Model
- Optimal Control Problem
- Agents Motion Prediction
- Uncertainty Propagation
- Agent Priority

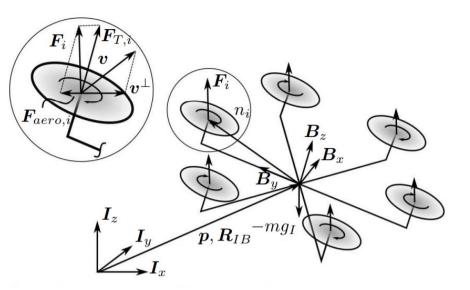


Fig3: Schematic of MAV [2]

Discussion

- A mixture of the two approach
 - Advantages and Disadvantages
- Newer approaches
- Possible extension of methods to other robotic gadgets and pieces
 - **3D or 2D**
 - Robotic arms and legs: Dependent 3D moving points
- Moving forward with a chance of collision: prediction vs taking action
- Recovery from collision
- Intelligent swarms

Conclusion

- MAV: Future looks bright
- Collision Avoidance in MAV
 - Why swarms of drones?
 - Leader Follower Approach
 - Model Predictive Approach
- Further applications and possibilities

References

- Figures
 - Fig 1: UAV Evolution, Source: <u>https://fas.org/irp/program/collect/uav.htm</u>
 - Fig 2: Formation Geometry, from Reference [1], Page
 - Fig 3: Schematic of MAV, from Reference [2], Page
- Literature
 - [1] Liu, Z. X., Yu, X., Yuan, C., & Zhang, Y. M. (2015). Leader-follower formation control of unmanned aerial vehicles with fault tolerant and collision avoidance capabilities. 2015 International Conference on Unmanned Aircraft Systems (ICUAS).
 - [2] Kamel, M., Alonso-Mora, J., Siegwart, R., & Nieto, J. (2017). Robust collision avoidance for multiple micro aerial vehicles using nonlinear model predictive control. 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
 - [3] Saska, M., Kasl, Z., & Přeucil, L. (2014). Motion planning and control of formations of micro aerial vehicles. IFAC Proceedings Volumes, 47(3), 1228–1233.
 - [4] Grancharova A., Johansen T.A. (2012) Nonlinear Model Predictive Control. In: Explicit Nonlinear Model Predictive Control. Lecture Notes in Control and Information Sciences, vol 429. Springer, Berlin, Heidelberg
 - [5] Tao, G., Joshi, S., & Ma, X. (2001). Adaptive state feedback and tracking control of systems with actuator failures. IEEE Transactions on Automatic Control, 46(1), 78–95.

Questions?

G. Mir - Collision Avoidance in MAV Motion Planning

Videos: Do we have time?

• NMPC path plan & follow: <u>https://www.youtube.com/watch?v=WgihttkwfFA</u>

• Leader-Follower: <u>https://www.youtube.com/watch?v=pDTKeyGI5gE</u>

• NMPC, motor fail: <u>https://www.youtube.com/watch?v=cocvUrPfyfo</u>

G. Mir - Collision Avoidance in MAV Motion Planning