

MIN Faculty Department of Informatics

PPO Reinforcement Learning for Dexterous In-Hand Manipulation

University of Hamburg

Faculty of Mathematics, Informatics and Natural Science

Department of Informatics

Technical Aspects of Multimodal Systems

Goals of this presentation

Introduction to Reinforcement Learning in Robotics

What is PPO and what are its advantages

Using PPO to improve Robot Dexterity

Reinforcement Learning - Introduction

Examples:

- Deep Q learning ATARI games
- AlphaGo
- Berkeley robot stacking Legos
- Physically-simulated quaruped movement

Reinforcement Learning – Policy Gradients

- On-policy vs Off-policy
- Do action, act like gradient probability is 1.0, backpropagate
- PG's do not require a label like in supervised learning

Reinforcement Learning – Problems

- Generated training data dependent on existing policy
- Does not scale easily to settings with difficult exploration (Robotics!)
- Difficult with high-dimensional actions
- Requires many samples & long training times

 \rightarrow Higher complexity problems need more sophisticated approaches

Reinforcement Learning – The way to improvement

- Using all data so far available and computing the best policy
- We always want the maximum discounted reward when deciding what action to take
- Optimizing the loss function without overfitting

TRPO - Visualization

Source: [2]

Trust Region Policy Optimization (TRPO)

- Define a region in which we trust an optimized policy to not have changed catastrophically
- Measuring the change between policies using KL-divergence

Problems with TRPO

- Performs poor on tasks with CNN's and RNN's
- Implementation is difficult
- Hard to use with architecture with multiple outputs

Proximal Policy Optimization

PPO-RL IN ROBOTICS

PPO – goals as set by the creators @OpenAl

- Simple implementation
- Sample efficient
- Easily tunable

$$L_{\text{PPO}} = \mathbb{E} \min\left(\frac{\pi(a_t|s_t)}{\pi_{\text{old}}(a_t|s_t)}\hat{A}_t^{\text{GAE}}, \operatorname{clip}\left(\frac{\pi(a_t|s_t)}{\pi_{\text{old}}(a_t|s_t)}, 1-\epsilon, 1+\epsilon\right)\hat{A}_t^{\text{GAE}}\right)$$

PPO – In practice

- Training of two separate networks (with similar architecture):
 - Policy network, mapping observations to actions
 - Value network, prediction the future reward from the current state
- Value network is only used in training and has access to more information than the life version, such as:
 - Hand joint angles + velocities
 - Object velocity
 - Object + Target orientation
- Live system uses only the policy network

PPO – Clipping aka the "Magic"

Real-World vs Simulation

Real-World

- Wide range of tasks
- Diverse environments
- Fixed physics

\rightarrow extremely hard so simulate

How to make Simulations transferable

Limiting control policy observations:

- Simplification of pose estimator
- i.e. only fingertip pose, not pressure

Randomizations:

- Observation noise
- Physics randomizations
- Unmodeled effects

Examples of different simulation environments

Complete System - Overview

Complete System - Overview

- 3 real cameras feed CNN's and predict object pose
- Control policy takes that object pose & the fingertip locations
- Control policy outputs actions

Conclusion

Main **benefits** while using Reinforcement Learning in Robotics:

- No previous real life experience needed
- Robot agent does not have to collect data in the real world
- Simulations can make use of scaling and distributed infrastructure

Main challenges for using Reinforcement Learning in Robotics

- Differences between reality and simulation need to be bridged through randomizations
- Policies need to overcome optimization obstacles, i.e. through PPO

Outlook

Similar approaches to be tested Vanilla Policy Gradient **KFAC** Blockwise approximation fo Fisher Natural Policy Gradient Information matrix (FIM) Very fast in optimizing objectives TRPO through momentum ACKTR ACKTR & PPO Advantage actor-critic model Extremely high sample efficiency

Sources

[1] Andrej Karpathy (2016). *Deep Reinforcement Learning: Pong from Pixels*, <u>http://karpathy.github.io/2016/05/31/rl/</u>

[2] Photo from <u>www.pexels.com</u>, free for personal and commercial use under CC0 Licence <u>https://www.pexels.com/photo/adventure-cliff-lookout-people-6763/</u> and paint3D by the author

[3] John Schulmann, Sergey Levine, Philipp Moritz, Michael Jordan, Peter Abeel(2015). *Trust Region Policy Optimization*, Volume 37: International Conference on Machine Learning, 7-9 July 2015, Lille, France

[4] GIF from https://giphy.com/, original link not functional, free for personal and non-commercial use as per https://giphy.com/terms

[5] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, Oleg Klimov(2017). *Proximal Policy Optimization Algorithms*. https://arxiv.org/pdf/1707.06347.pdf

Sources cont.

[6] *Learning Dexterity* (2018), as seen on the OpenAI Youtube channel: https://www.youtube.com/watch?v=jwSbzNHGfIM

[7] John Schulman (2017). Advanced Policy Gradient Methods:

Natural Gradient, TRPO, and More, <u>https://drive.google.com/file/d/0BxXI_RttTZAhMVhsNk5VSXU0U3c/</u>

Addendum

- Policy and Value Network
- GAE
- Distributed Training Structure
- Effect of Memory
- Physics vs Simulation Results
- Values for different Physics Parameters
- Different Training Environments Compared

Policy and Value network

GAE – Generalized Advantage Estimator

$$\hat{V}_{t}^{(k)} = \sum_{i=t}^{t+k-1} \gamma^{i-t} r_{i} + \gamma^{k} V(s_{t+k}) \approx V^{\pi}(s_{t}, a_{t})$$

$$\hat{V}_t^{\text{GAE}} = (1 - \lambda) \sum_{k>0} \lambda^{k-1} \hat{V}_t^{(k)} \approx V^{\pi}(s_t, a_t),$$

$$\hat{A}_t^{\text{GAE}} = \hat{V}_t^{\text{GAE}} - V(s_t) \approx A^{\pi}(s_t, a_t).$$

Distributed Training Structure

Effect of Memory in Simulation

Simulated vs Physical Results

Simulated task	Mean	Median	Individual trials (sorted)
Block (state)	43.4 ± 13.8	50	-
Block (state, locked wrist)	44.2 ± 13.4	50	-
Block (vision)	30.0 ± 10.3	33	-
Octagonal prism (state)	29.0 ± 19.7	30	-
Physical task			
Block (state)	18.8 ± 17.1	13	50, 41, 29, 27, 14, 12, 6, 4, 4, 1
Block (state, locked wrist)	26.4 ± 13.4	28.5	50, 43, 32, 29, 29, 28, 19, 13, 12, 9
Block (vision)	15.2 ± 14.3	11.5	46, 28, 26, 15, 13, 10, 8, 3, 2, 1
Octagonal prism (state)	7.8 ± 7.8	5	27, 15, 8, 8, 5, 5, 4, 3, 2, 1

Ranges of physics parameter randomizations

Parameter	Scaling factor range	Additive term range
object dimensions	uniform([0.95, 1.05])	
object and robot link masses	uniform([0.5, 1.5])	
surface friction coefficients	uniform([0.7, 1.3])	
robot joint damping coefficients	loguniform([0.3, 3.0])	
actuator force gains (P term)	loguniform([0.75, 1.5])	
joint limits		$\mathcal{N}(0, 0.15)$ rad
gravity vector (each coordinate)		$\mathcal{N}(0,0.4)~\mathrm{m/s^2}$

Different training environments compared

Training environment	Mean	Median	Individual trials (sorted)
All randomizations (state)	18.8 ± 17.1	13	50, 41, 29, 27, 14, 12, 6, 4, 4, 1
No randomizations (state)	1.1 ± 1.9	0	6, 2, 2, 1, 0, 0, 0, 0, 0, 0
No observation noise (state)	15.1 ± 14.5	8.5	45, 35, 23, 11, 9, 8, 7, 6, 6, 1
No physics randomizations (state)	3.5 ± 2.5	2	7, 7, 7, 3, 2, 2, 2, 2, 2, 1
No unmodeled effects (state)	3.5 ± 4.8	2	16, 7, 3, 3, 2, 2, 1, 1, 0, 0
All randomizations (vision)	15.2 ± 14.3	11.5	46, 28, 26, 15, 13, 10, 8, 3, 2, 1
No observation noise (vision)	5.9 ± 6.6	3.5	20, 12, 11, 6, 5, 2, 2, 1, 0, 0