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 Intro to RL: successes and problems 

 Directed exploration and why RL in Robotics needs it

 Three recent approaches: 

1. Intrinsic Curiosity Module (ICM)

2. Random Network Distillation (RND)

3. Episodic Curiosity Through Reachability (EC)

 Discussion

OutlineOutline
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 Algorithms maximize discounted cumulative reward

 Exploration essential, usually used: epsilon-greedy  

Reinforcement Learning - Introduction

From: “Reinforcement Learning: An Introduction” by Sutton and Barto [1]
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RL  – Successes

https://foreignpolicy.com/2016/03/18/china-go-chess-
west-east-technology-artificial-intelligence-google/ https://blog.openai.com/openai-five/

AlphaGo

Learning Dexterous In-Hand Manipulation

OpenAI Five

From the whitepaper [4]
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RL  – Limitations

https://foreignpolicy.com/2016/03/18/china-go-chess-
west-east-technology-artificial-intelligence-google/ https://blog.openai.com/openai-five/

World known + Self-play

Domain Randomization + Simulation

Self-play + Simulation

From the whitepaper [4]
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RL  – Problems in Robotics

Ideally learn without simulation but:

• Sparse Rewards: 
- necessary, but difficult to reach

• Sample Efficiency:
- hardware limits

https://blog.openai.com/faulty-reward-functions/
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Directed Exploration - Introduction

● Helps with sparse rewards

● Makes exploration efficient

In general:
Total reward =
intrinsic + extrinsic reward

Environment → extrinsic reward

Exploration Algorithm → intrinsic reward 

Comparison of TRPO+VIME (red) and TRPO (blue) on MountainCar: 
visited states until convergence. Source: “VIME: Variational Information 
Maximizing Exploration” [2]
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Intrinsic Curiosity Module (ICM) - Overview

● Train world model:
- Predicts next state from current state

● Magnitude of prediction error of this model = intrinsic reward

● World model predicts relevant features
- Use features that are necessary for inverse dynamics
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Intrinsic Curiosity Module (ICM) - Details
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Intrinsic Curiosity Module (ICM) - Demo

See: https://pathak22.github.io/noreward-rl/
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Intrinsic Curiosity Module (ICM) - Problems

● Four factors that influence predictability of next states:

1) States similar to next state not yet encountered often
2) Stochastic environment
3) World model is too weak
4) Partial observability

● Only first one is a desired source of unpredictability
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Intrinsic Curiosity Module (ICM) – Problems

Problems can be mitigated: large models, Bayesian networks, LSTM

https://blog.openai.com/reinforcement-learning-with-prediction-based-rewards/

“Montezuma’s
Revenge” is a 
difficult atari 
game:
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Random Network Distillation (RND) - 
Motivation
Deals with three previous problems by only using current state

https://blog.openai.com/reinforcement-learning-with-prediction-based-rewards/
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Random Network Distillation (RND) - 
Overview

● Initialize Random Network (RN) and Predictor Network (PN) with 
random weights

● PN and RN have the same architecture and map the state 
representation to a vector

● PN is trained to predict output of RN for current state:
- The prediction error is the intrinsic reward
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Random Network Distillation (RND) - 
Results

From the whitepaper [6]
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Random Network Distillation (RND) - 
Drawbacks

● Simple, but not flexible

● No evidence for sample efficiency (trained for 1.6 Billion frames)

● No filtering of irrelevant state features 

● Does not return to states it has seen before within episode
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Episodic Curiosity Through Reachability 
(EC) - Idea

All figures from the whitepaper [7]

Incorporates acting into curiosity
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Episodic Curiosity Through Reachability 
(EC) - Overview

All figures from the whitepaper [7]
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Episodic Curiosity Through Reachability 
(EC) – How to Embed and Compare

All figures from the whitepaper [7]
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Episodic Curiosity Through Reachability 
(EC) – Results on VizDoom

Very sparse rewards                    Sparse rewards                      Dense rewards

All figures from the whitepaper [7]
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Episodic Curiosity Through Reachability 
(EC) – Reward visualization

https://www.youtube.com/watch?v=mphIRR6VsbM&feature=youtu.be
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Conclusion of these approaches

● ICM:
● Works on state predictability
- Requires powerful world model

● RND:
● Uses form of pseudo-state-count
● Simple
- Not flexible

● EC: 
● Uses episodic memory to determine reachability
● Incorporates acting in curiosity
- Has many moving parts
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Drawbacks of Intrinsic Motivation in 
Robotics in General

Safety: It might be interesting for the robot to destroy parts of 
the environment, itself, or possibly humans.

Maybe fixable by:
- letting robots experience pain on extremities [3]
- training supervisor agent that identifies unsafe behavior

Complex intrinsic motivation might lead to 
unexpectable behavior:

http://terminator.wikia.com/wiki/Skynet
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Outlook and Final Conclusion

Intrinsic motivation important for real intelligence, as 
obtaining extrinsic reward is “only” optimization problem.

Unclear which motivation is best!

Combine motivation approaches?

What are your intrinsic motivations? 

Is there high and low-level curiosity?
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Thank you for listening!
Any Questions?
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