

Intelligent Gait Adaptation in **Malfunctioning Robots**

Amy Bryce

TA University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

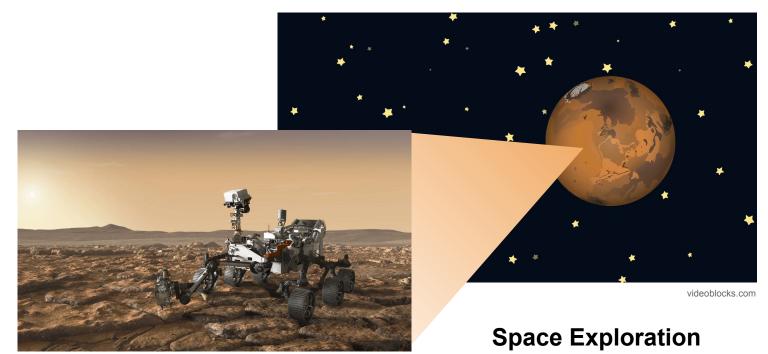
Technical Aspects of Multimodal Systems

19. November 2018

What does it mean to intelligently adapt the gait of a malfunctioning robot?

- **Gait**: repetitive forward walking motion at a particular speed.
- Malfunctioning Robot: e.g. a damaged joint.
- Adaptation: change behavior in response to abnormal conditions.
- Intelligence: the application of machine learning algorithms.

- 1. Getting to know the problem
- 2. Classical solutions
- 3. Intelligent solutions
- 4. Intelligent Trial & Error algorithm
- 5. Reset Free Trial & Error algorithm
- 6. Comparing solutions
- 7. Summary


- 1. Getting to know the problem
- 2. Classical solutions
- 3. Intelligent solutions
- 4. Intelligent Trial & Error algorithm
- 5. Reset Free Trial & Error algorithm
- 6. Comparing solutions
- 7. Summary

doobybrain.com


Problem Scenarios

space.com

Problem Scenarios

shutterstock.com

Sciencedaily.com

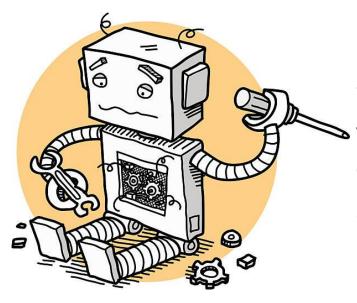
army.mil

Health Care

Deep Sea Exploration

Search & Rescue

Amy Bryce -- Intelligent Gait Adaptation in Malfunctioning Robots


- 1. Getting to know the problem
- 2. Classical solutions
- 3. Intelligent solutions
- 4. Intelligent Trial & Error algorithm
- 5. Reset Free Trial & Error algorithm
- 6. Comparing solutions
- 7. Summary

doobybrain.com

Classical Solutions

- 1. Robot programmed to achieve an objective
- 2. Robot aware of the possible ways it could malfunction
- 3. Robot aware of possible ways to compensate for each malfunction
 - Robot malfunctions
- 5. Robot uses sensors to diagnose the malfunction
- 6. Robot resets itself
- 7. Robot reprograms itself to compensate for the malfunction
- 8. Robot proceeds with objective

Problems with Classical Solutions

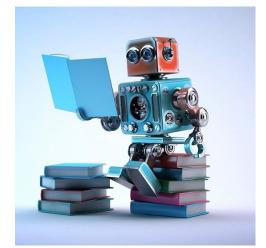
- Not scalable:
 - \circ More complex robots \rightarrow more possible ways to malfunction
 - More solutions to store \rightarrow state space grows exponentially
- Expensive to build:
 - More malfunctions to diagnose \rightarrow more sensors required
 - More state to keep track of \rightarrow large and expensive storage system

- 1. Getting to know the problem
- 2. Classical solutions
- 3. Intelligent solutions
- 4. Intelligent Trial & Error algorithm
- 5. Reset Free Trial & Error algorithm
- 6. Comparing solutions
- 7. Summary

doobybrain.com

Intelligent Solutions

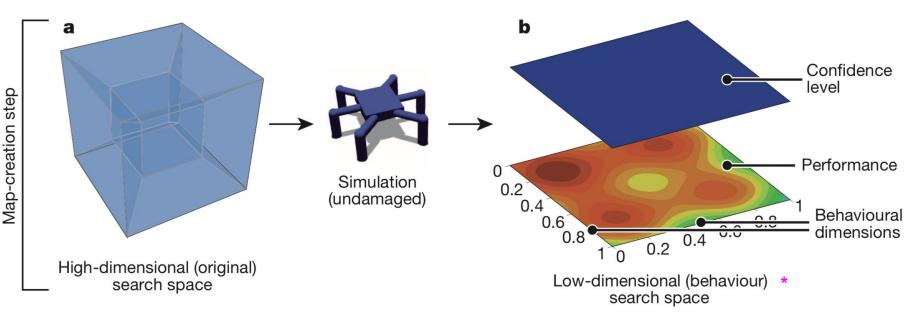
Goal: Overcome problems that face classical solutions:


- Avoid the diagnostic step completely
- Learn to compensate dynamically

Often use machine learning algorithms to accomplish this:

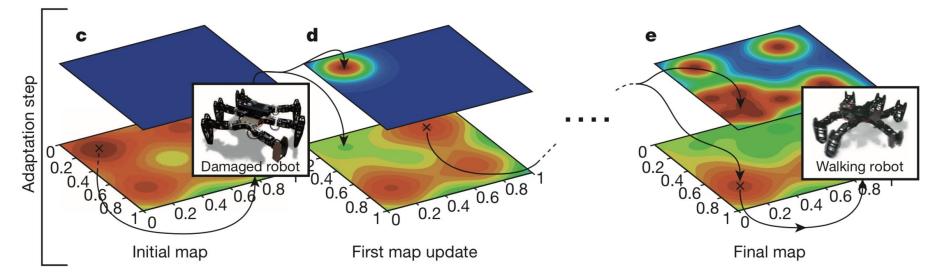
- Reinforcement learning
- Policy search (direct, model-based, episodic, etc.)
- ..

Intelligent solutions typically consist of two phases:


- Offline: Simulation & map building
- Online: Real-world application & adaptation

jinnovations.ca

Simulation & Map Building



Cully, Antoine et al. "Robots That Can Adapt Like Animals." Nature 521.7553 (2015): 503–507.

Real-world Application & Adaptation

 $\textbf{Detect} \rightarrow \textbf{Look} ~ \textbf{Up} \rightarrow \textbf{Try} \rightarrow \textbf{Repeat}$

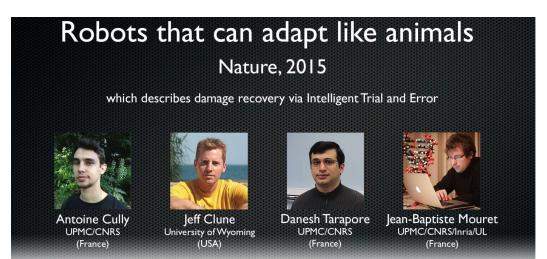
Cully, Antoine et al. "Robots That Can Adapt Like Animals." Nature 521.7553 (2015): 503–507.

Intelligent Solutions

[Video Demonstration]

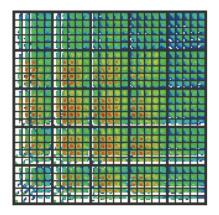
Clips are taken from: https://www.youtube.com/watch?v=UZXSSHZtLFc

Amy Bryce -- Intelligent Gait Adaptation in Malfunctioning Robots


- 1. Getting to know the problem
- 2. Classical solutions
- 3. Intelligent solutions
- 4. Intelligent Trial & Error algorithm
- 5. Reset Free Trial & Error algorithm
- 6. Comparing solutions
- 7. Summary

doobybrain.com

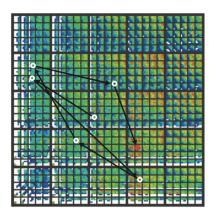
Intelligent Trial & Error Algorithm


Introduces two new algorithms:

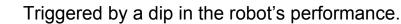
- Simulation → MAP-Elites
- Adaptation → Map-Based Bayesian Optimization (M-BOA)

MAP-Elites

Input: High-dimensional search space **Output:** Behavior-performance map


Cully, Antoine et al. "Robots That Can Adapt Like Animals." Nature 521.7553 (2015): 503–507.

- Create an empty behavior-performance map.
- Each location in the map represents the performance of a possible solution.
- Seed Phase:
 - \rightarrow generate a set of random candidate solutions.
 - \rightarrow evaluate each solution and record its performance in the map.
- Mutation Phase:
 - \rightarrow pick an existing solution at random from the map.
 - \rightarrow randomly mutate a copy of that solution.
 - \rightarrow evaluate that mutated solution and record its performance in the map.
 - \rightarrow repeat until a stopping procedure is met (e.g. time, # iterations).



Map-Based Bayesian Optimization

Input: Behavior-performance map & live sensor data **Output:** A high performing solution to compensate for a malfunction

Cully, Antoine et al. "Robots That Can Adapt Like Animals." Nature 521.7553 (2015): 503–507.

- Measures the current behavior of the robot using live sensor data.
- Looks up a solution from the behavior map.
- Tries the solution and measures its performance.
- If this solution does not perform well enough...
 - Updates the behavior map with the observed performance.
 - Continues to try **similar** solutions until a high performing solution is found.
 - Bayesian optimization is used to search for these similar solutions.

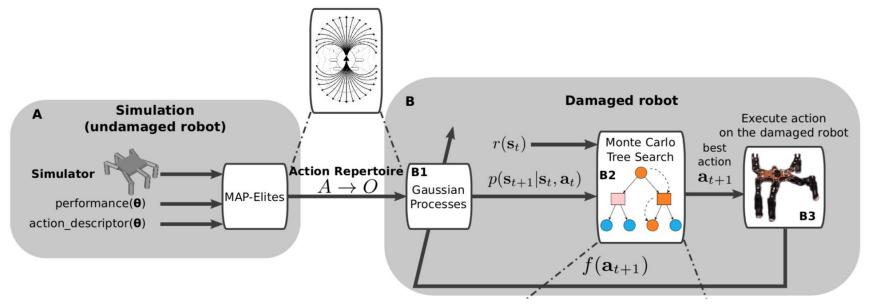
- 1. Getting to know the problem
- 2. Classical solutions
- 3. Intelligent solutions
- 4. Intelligent Trial & Error algorithm
- 5. Reset Free Trial & Error algorithm
- 6. Comparing solutions
- 7. Summary

Reset Free Trial & Error Algorithm

Reset-Free Trial-and-Error Learning for Robot Damage Recovery

Konstantinos Chatzilygeroudis, Vassilis Vassiliades, and Jean-Baptiste Mouret

Inria Nancy - Grand Est, France
CNRS, France
Université de Lorraine, France


Elsevier B.V., 2017

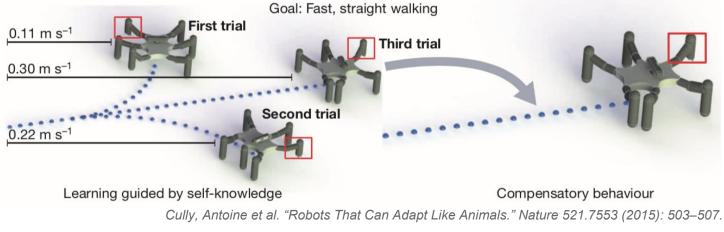
- Simulation \rightarrow Reuses MAP-Elites
- Adaptation \rightarrow Replaces M-BOA with Monte Carlo Tree Search (MCTS)

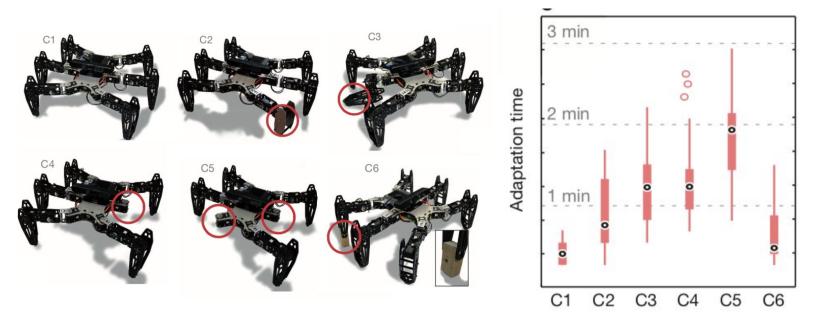
Amy Bryce -- Intelligent Gait Adaptation in Malfunctioning Robots

Reset Free Trial & Error Algorithm

Chatzilygeroudis, et al. "Reset-Free Trial-and-Error Learning for Robot Damage Recovery." Robotics and Autonomous Systems 100 (2018): 236–250.

- 1. Getting to know the problem
- 2. Classical solutions
- 3. Intelligent solutions
- 4. Intelligent Trial & Error algorithm
- 5. Reset Free Trial & Error algorithm
- 6. Comparing solutions
- 7. Summary

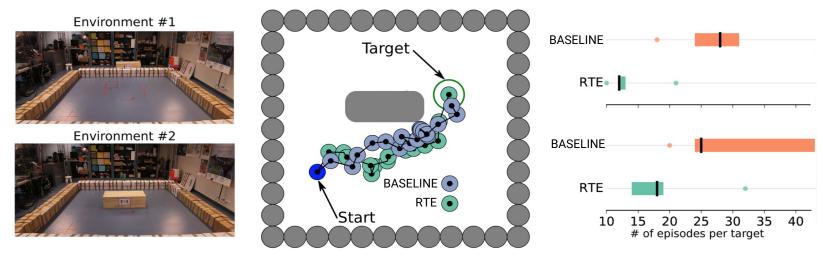



Problem: Classical solutions suffer from the "curse of dimensionality". **Solution:** IT&E performs offline simulations to generate a behavior map with fewer dimensions.

Problem: The more complex the robot, the more expensive the classical solution costs. **Solution:** IT&E does not require extra sensors to diagnose a malfunction.

Experiment Objective: Move forward as fast as possible.

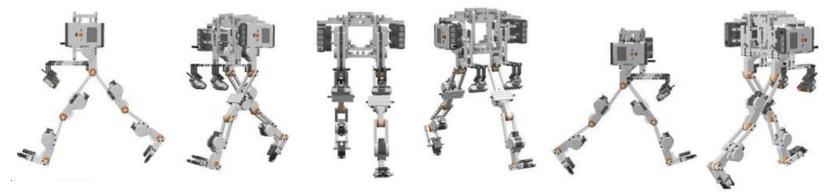
Amy Bryce -- Intelligent Gait Adaptation in Malfunctioning Robots



Cully, Antoine et al. "Robots That Can Adapt Like Animals." Nature 521.7553 (2015): 503–507.

Problem: IT&E does not take into consideration the physical environment and obstacles. **Solution:** RT&E uses MCTS to leverage knowledge of the physical environment when searching for a solution.

Experiment Objective: Reach a specified target as fast as possible.



Chatzilygeroudis, et al. "Reset-Free Trial-and-Error Learning for Robot Damage Recovery." Robotics and Autonomous Systems 100 (2018): 236–250.

Problem: RT&E can be slow when learning with Gaussian processes.Solutions: (1) Rewrite to reduce the query time of the Gaussian processes.(2) Replace the Gaussian process with a neural network.

Future ideas: Use IT&E and RT&E to train legged robots to walk in the first place.

geek.com

- 1. Getting to know the problem
- 2. Classical solutions
- 3. Intelligent solutions
- 4. Intelligent Trial & Error algorithm
- 5. Reset Free Trial & Error algorithm
- 6. Comparing solutions
- 7. Summary

doobybrain.com

Summary

- There is a need for robust solutions for adapting malfunctioning robots.
- Classical solutions encounter scale and cost problems.
- Two new intelligent approaches:
 - Intelligent Trial & Error (IT&E)
 - Reset Free Trial & Error (RT&E)
- Intelligent approaches outperform classical approaches without the same scale and cost problems.
- This is an ongoing area of exciting research!

Thank you for your attention.

Summary

- There is a need for robust solutions for adapting malfunctioning robots.
- Classical solutions encounter scale and cost problems.
- Two new intelligent approaches:
 - Intelligent Trial & Error (IT&E)
 - Reset Free Trial & Error (RT&E)
- Intelligent approaches outperform classical approaches without the same scale and cost problems.
- This is an ongoing area of exciting research!

Thank you for your attention.

Questions?

