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Why do we need Stereo Vision?
Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

[Geiger, A. 2012]

[Nguyen, P. D., et al. 2018]

Human to Robot Handover NICO robot [WTM]

More human like than TOF or phase shift
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Simple Human to Robot Handover
Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

3 main steps:

1. Detection of the position (x,y,z)

2. Move robot arm towards (under) the object

3. Detect the moment when object is in hand
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Human to robot handover (cont.)
Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

·XL

Left image

·XR

Right image

I x,y coordinates easy with Object detection and tracking (later)
I But how to get z?
I Displacement dP = XL − XR
I Disparity
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Disparity Map
Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

Original Image [Middlebury Dataset] Disparity Map [Middlebury Dataset]
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Depth Calculation
Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

[Olofsson, A. 2010]

I Depth can be calculated by zP = T ·f
dP

I T = 2l and dP = XL − XR
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Disparity Map
Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

[Olofsson, A. 2010]

I Problem: how do we know that XL and XR correspond to same
Point P?

I Solution: Stereo correspondence algorithms (SC)
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Basics: Camera Calibration
Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

Depth Calculation

Stereo Cor-
respondence

Image Rec-
tification

Camera Cal-
ibration

I Intrinsic and extrinsic parameters
known

I Has to be done ones
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Basics: Image Rectification
Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

Depth Calculation

Stereo Cor-
respondence

Image Rec-
tification

Camera Cal-
ibration

I If cameras are not perfectly
aligned

I Same point on 2 images are at
the epipolar line [Kuhl, A., 2005]

I Making these parallel to baseline
I Reduce complexity

[Olofsson, A. 2010]
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[Olofsson, A. 2010]

[Olofsson, A. 2010]

I Transform 2D search in 1D
I Linear time complexity [Kuhl, A., 2005]
I Has to be done for each image pair
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Basics: Stereo Correspondence
Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

Depth Calculation

Stereo Cor-
respondence

Image Rec-
tification

Camera Cal-
ibration

I Find matching pixels in both
images

I Calc. disparity d = XL − XR f.e.
pixel

I Problems: Occlusion, sensor
noise ... [Olofsson, A. 2010]

I Still open research [Luo, W. et
al., 2016]
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Basics: Depth Calculation
Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

Depth Calculation

Stereo Cor-
respondence

Image Rec-
tification

Camera Cal-
ibration

I F.e. pixel in disparity map: calc.
distance z = T ·f

d
I Straight forward approach with

linear complexity
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Basics: Stereo Correspondence
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[Middleburry Dataset]
I Find corresponding pixels
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Basics: Stereo Correspondence
Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

2 basic approaches:

I local

I Window based
I Fast, simple, sensitive to noise and occlusion [Olofsson, A. 2010]

I global

I For whole image at once
I Better in noise/occlusion handling [Olofsson, A. 2010]

Focus on local

A. Logacjov – Stereo Vision Approaches for Human to Robot Handover 16 / 44



Basics: Stereo Correspondence
Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

2 basic approaches:

I local

I Window based
I Fast, simple, sensitive to noise and occlusion [Olofsson, A. 2010]

I global

I For whole image at once
I Better in noise/occlusion handling [Olofsson, A. 2010]

Focus on local

A. Logacjov – Stereo Vision Approaches for Human to Robot Handover 16 / 44



Basics: Stereo Correspondence
Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

2 basic approaches:

I local
I Window based
I Fast, simple, sensitive to noise and occlusion [Olofsson, A. 2010]

I global

I For whole image at once
I Better in noise/occlusion handling [Olofsson, A. 2010]

Focus on local

A. Logacjov – Stereo Vision Approaches for Human to Robot Handover 16 / 44



Basics: Stereo Correspondence
Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

2 basic approaches:

I local
I Window based
I Fast, simple, sensitive to noise and occlusion [Olofsson, A. 2010]

I global
I For whole image at once
I Better in noise/occlusion handling [Olofsson, A. 2010]

Focus on local

A. Logacjov – Stereo Vision Approaches for Human to Robot Handover 16 / 44



Basics: Stereo Correspondence
Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

2 basic approaches:

I local
I Window based
I Fast, simple, sensitive to noise and occlusion [Olofsson, A. 2010]

I global
I For whole image at once
I Better in noise/occlusion handling [Olofsson, A. 2010]

Focus on local

A. Logacjov – Stereo Vision Approaches for Human to Robot Handover 16 / 44



Basics: Stereo Correspondence
Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

I Cost is needed
I F.e. pixel, compute cost accord. to each possible disparity

C(x1, y1, 0)

,C(x1, y1, 1),C(x1, y1, 2),C(x1, y1, 3)

,C(x1, y1, 4)

C(x1, y2,−1),C(x1, y2, 0),C(x1, y2, 1),C(x1, y2, 2),C(x1, y2, 3)

I Cost Computation
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Basics: Stereo Correspondence
Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

I Window centered at pixel
I Taking neighbors into account
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Basics: Stereo Correspondence
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d

I Disparity Space
Image (DSI)

Min
d

C

I For each pixel
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Basics: Stereo Correspondence
Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

I Example window-based cost computation

[Olofsson, A. 2010]
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Stereo Correspondence Algorithms
Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

3 different approaches to compute the matching cost:
I (Sum of) Absolute Intensity Difference CSAD(x , y , d)

I Deep Learning Approach [Luo, W. et al., 2016]

I Efficient Large-Scale-Stereo-Matching (ELAS) [Geiger, A. 2012]
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(Sum of) Absolute Intensity Difference
Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

I Absolute Intensity Difference (AD):
CAD(x , y , d) = |IL(x , y)− IR(x − d , y)|

I (Sum of) = Window-based
I Sum of AD:

CSAD(x , y , d) = Σ(u,v)∈N(x ,y)|IL(u, v)− IR(u − d , v)|

I With Neighborhood N(x,y) of (x,y)
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(Sum of) Absolute Intensity Difference
Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

I Pros: Fast, simple. According to [Scharstein, D. et al., 2002]
one of the fastest classical approach.

I Cons: Bad accuracy (place 8 of 20 according to [Scharstein, D.
et al., 2002])
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Deep Learning Approach [Luo, W. et al., 2016]
Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

[Luo, W. et al., 2016]
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Deep Learning Approach [Luo, W. et al., 2016]
Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

[Luo, W. et al., 2016]

I Put one image patch, centered at pixel (x,y) as input (9x9)

I Put an image patch, of size (max_disparity,9) as sec. input

I Network computes in one iteration, the cost for all given
disparities
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Deep Learning Approach [Luo, W. et al., 2016]
Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

I Training:
I Random image patches from the Kitti dataset
I Cross entropy loss for multi class classification (disparities)
I 6.5 hours training

I Testing/Benchmarking:
I On Kitti and Middleburry dataset
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Deep Learning Approach [Luo, W. et al., 2016]
Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

I Pros:
I Very fast, compared to other learning approaches (1sec on

NVIDIA Titan-X)
I As accurate as other learning approaches

I Cons:
I No comparison to non learning state-of-the art approaches
I After calculation, cost aggregation, smoothing done (time

consuming)
I No CPU runtime
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Efficient Large-Scale-Stereo-Matching (ELAS) [Geiger,
A. 2012]
Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

I Not trying to find matching f.e. pixel in first run
I They can be ambiguous
I Find robust matchings with matching support points

algorithm
I These pixels: support points

I Find support points by calc. L1-distance between feature
vectors

I Using this support points to calc. the remaining matchings
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Efficient Large-Scale-Stereo-Matching (ELAS) [Geiger,
A. 2012]
Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

I Pros:
I Very fast, (0.7 sec on i7 CPU with 2.66 GHz )
I Performs well on higher resolution images (900x750)
I Better accuracy than other state-of-the-art approaches

I Cons:
I Non trivial algorithm
I 0.7 sec maybe to slow for human-robot-handover
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Efficient Large-Scale-Stereo-Matching (ELAS) [Geiger,
A. 2012]
Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

iCub using ELAS [Nguyen, P. D., et al. 2018]
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https://youtu.be/A9Por3anPJ8?t=49


Improvements for Human-to-Robot Handover
Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

I All 3 approaches can be used in real-time applications
I With powerful hardware (except SAD)
I Maybe this is not given for some humanoid robots

I Focusing on creating a good disparity map for each pixel
I They are also focusing on handling noise (except SAD)

I But we don’t need both (at least not so much)
I We only need the pixels corresponding to object
I We don’t need to consider a lot of different disparities
I Only objects which are nearer than approx. 30cm
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Improvements for Human-to-Robot Handover
Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

We need 3 things:
1. Object detection and tracking (create bounding box )

2. Cutting out the bounding box

3. Use z = T ·f
d to calc. disparity boundaries
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Object Detection and Object Tracking
Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

I Object Detection (YOLOv3)[Redmon, J., 2018]
I Has to be done once at the beginning
I After that, tracking

I Object Tracking (CSRT)[OpenCV]
I Fast and accurate tracking

NICO example
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Cutting out the bounding box
Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

Full view

Cut out view

I Detection runtime: approx 2 sec
I x coordinates important for disparity
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Cutting out the BB (Disparity Comparison)
Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

Original image left [Middlebury Dataset] Original image right [Middlebury Dataset]

I size: 640x438
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Cutting out the BB (Disparity Comparison)
Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

SAD ELAS [Geiger, A. 2012]
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Cutting out the BB (Disparity Comparison)
Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

SAD ELAS [Geiger, A. 2012]

I size: 224x376 (approx 3 times smaller)
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Cutting out the BB (Disparity Comparison)
Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

I SAD:
I Big: 0.014 sec
I Small: 0.006 sec (2 times faster)

I ELAS:
I Big: 0.24 sec
I Small: 0.06 sec (4 times faster)

I Time to cut out: 0.0005 sec
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Calc. the disparity boundaries
Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

I z = T ·f
d

I d = T ·f
z

I Knowing T , f and max. reachable dist. zmax :
I Calc. smallest disparity dmin = T ·f

zmax
I Similar to smallest distance zmin

I Lead to a smaller DSI

d d
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Improvements for Human-to-Robot Handover
Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

1. (*)Calibrate the cameras
2. Get both video streams from the cams
3. Rectify the frames
4. (*)At some frame, detect the object in both frames

(YOLOv3 approx. 2 sec)
5. Track it (CSRT approx. 0.05 sec)
6. Cut out the BB (approx. 0.0005 sec)
7. Stereo Correspondence Algorithm (SAD: between 0.006 and

0.014 sec)
8. Calculate the depth of the nearest pixels

(*) = Only 1x
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Future Work
Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

I Calibrate the cameras of NICO

I Apply different SC algorithms
I Check for runtime
I Check for distance accuracy
I Check for different resolutions

I Try to implement a handover
I Detect object in scene
I Calculate (x,y,z) coordinates of object
I Implement inverse kinematic to determine motor positions
I Detect the moment the object is placed in the hand
I Close the hand
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The End
Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

Thank you for your attention.
Any Questions?
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