

MIN Faculty Department of Informatics

Stereo Vision Approaches for Human to Robot Handover

Aleksej Logacjov

University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems

3. December 2018

- 1. Motivation
- 2. Basics
- 3. Stereo Correspondence Algorithms
- 4. Improvements for Human-to-Robot Handover
- 5. Future Work

Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover

360° Velodyne Laserscanner Stereo Camera Rig @ GPS

[Geiger, A. 2012]

More human like than TOF or phase shift

A. Logacjov - Stereo Vision Approaches for Human to Robot Handover

Why do we need Stereo Vision?

Motivation

Stereo Correspondence Alg

Improvements for Human

Future Work

[Geiger, A. 2012]

[Nguyen, P. D., et al. 2018]

More human like than TOF or phase shift

A. Logacjov - Stereo Vision Approaches for Human to Robot Handover

Why do we need Stereo Vision?

Motivation

Stereo Correspondence Alg

Improvements for Human-

Future Work

[Nguyen, P. D., et al. 2018]

Human to Robot Handover NICO robot [WTM]

More human like than TOF or phase shift

A. Logacjov - Stereo Vision Approaches for Human to Robot Handover

Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Hando

Future Work

3 main steps:

Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

3 main steps:

1. Detection of the position (x,y,z)

Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

3 main steps:

- 1. Detection of the position (x,y,z)
- 2. Move robot arm towards (under) the object

Motivation Basics Stereo Correspondence Algorithms Improve

Improvements for Human-to-Robot Handov

Future Work

3 main steps:

- 1. Detection of the position (x,y,z)
- 2. Move robot arm towards (under) the object
- 3. Detect the moment when object is in hand

Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

3 main steps:

1. Detection of the position (x,y,z)

Motivation

Stereo Corresponden

Improvements for Human-to-Robot H

Future Work

Left image

Motivation

Stereo Corresponden

Improvements for Human-to-Rob

Future Work

Left image

x,y coordinates easy with Object detection and tracking (later)

Motivation

Stereo Correspondence

Improvements for Human-to-Rob

Future Work

Left image

x,y coordinates easy with Object detection and tracking (later)But how to get z?

Motivation

Stereo Correspondence

Improvements for Human-to-Robot Ha

Future Work

Left image

Right image

x,y coordinates easy with Object detection and tracking (later)
But how to get z?

Motivation

Stereo Correspondence

Improvements for Human-to-Robot H

Future Work

Left image

Right image

x,y coordinates easy with Object detection and tracking (later)

- But how to get z?
- Displacement $d_P = X_L X_R$

Motivation

Stereo Correspondence

Improvements for Human-to-Robot Ha

Future Work

Left image

Right image

- x,y coordinates easy with Object detection and tracking (later)
- But how to get z?
- Displacement $d_P = X_L X_R$
- Disparity

Disparity Map

Motivation

Stereo Correspondence Alg

Improvements for Human-to-Robot Handover Futu

Original Image [Middlebury Dataset]

Disparity Map [Middlebury Dataset]

Future Work

Future Work

[Olofsson, A. 2010]

Depth can be calculated by z_P = T·f/d_P
 T = 2l and d_P = X_L - X_R

Motivation

Future Work

[Olofsson, A. 2010]

Problem: how do we know that X_L and X_R correspond to same Point P?

Solution: Stereo correspondence algorithms (SC)

Motivation

 $y \bullet P = (x_P, y_P, z_P) \int^z z_P dz$ x_L x_R Im_L Im_R х

[Olofsson, A. 2010]

 Problem: how do we know that X_L and X_R correspond to same Point P?
 Solution: Stereo correspondence algorithms (SC)

Motivation

Future Work

- Problem: how do we know that X_L and X_R correspond to same Point P?
- Solution: Stereo correspondence algorithms (SC)

- If cameras are not perfectly aligned
- Same point on 2 images are at the epipolar line [Kuhl, A., 2005]
- Making these parallel to baseline
- Reduce complexity

- If cameras are not perfectly aligned
- Same point on 2 images are at the epipolar line [Kuhl, A., 2005]
- Making these parallel to baseline
- Reduce complexity

Basics

- If cameras are not perfectly aligned
- Same point on 2 images are at the epipolar line [Kuhl, A., 2005]
- Making these parallel to baseline
- Reduce complexity

[Olofsson, A. 2010]

Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

[Olofsson, A. 2010]

Transform 2D search in 1D

Linear time complexity [Kuhl, A., 2005]

Has to be done for each image pair

Motivation Ba	asics Stereo (
---------------	----------------	--	--	--	--

[Olofsson, A. 2010]

[Olofsson, A. 2010]

Transform 2D search in 1D

Linear time complexity [Kuhl, A., 2005]

Has to be done for each image pair

Motivation Basics			
-------------------	--	--	--

[Olofsson, A. 2010]

[Olofsson, A. 2010]

- Transform 2D search in 1D
- Linear time complexity [Kuhl, A., 2005]
- Has to be done for each image pair

Motivation Basics			
-------------------	--	--	--

[Olofsson, A. 2010]

[Olofsson, A. 2010]

- Transform 2D search in 1D
- Linear time complexity [Kuhl, A., 2005]
- Has to be done for each image pair

Basics

Motivation

Stereo Correspondence A

Improvements for Human-to-Robot Handove

Future Work

Left image

Right image

Stereo Correspondence

- Find matching pixels in both images
- Calc. disparity $d = X_L X_R$ f.e. pixel
- Problems: Occlusion, sensor noise ... [Olofsson, A. 2010]
- Still open research [Luo, W. et al., 2016]

Stereo Correspondence

- Find matching pixels in both images
- Calc. disparity $d = X_L X_R$ f.e. pixel
- Problems: Occlusion, sensor noise ... [Olofsson, A. 2010]
- Still open research [Luo, W. et al., 2016]

Stereo Correspondence

- Find matching pixels in both images
- Calc. disparity $d = X_L X_R$ f.e. pixel
- Problems: Occlusion, sensor noise ... [Olofsson, A. 2010]
- Still open research [Luo, W. et al., 2016]

Stereo Correspondence

- Find matching pixels in both images
- Calc. disparity $d = X_L X_R$ f.e. pixel
- Problems: Occlusion, sensor noise ... [Olofsson, A. 2010]
- Still open research [Luo, W. et al., 2016]
Basics: Depth Calculation

Motivation Basics Stereo Correspondence Algorithms Imp

Improvements for Human-to-Robot Handover

Future Work

[Middleburry Dataset]

Find corresponding pixels

Motivation Basics Stereo Correspondence Algorithms

Improvements for Human-to-Robot Handove

Future Work

[Middleburry Dataset]

Find corresponding pixels

[Middleburry Dataset]

Find corresponding pixels

Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

2 basic approaches:

Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

2 basic approaches:

Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

2 basic approaches:

local

Window based

Fast, simple, sensitive to noise and occlusion [Olofsson, A. 2010]

Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

2 basic approaches:

- local
 - Window based
 - Fast, simple, sensitive to noise and occlusion [Olofsson, A. 2010]

- global
 - For whole image at once
 - Better in noise/occlusion handling [Olofsson, A. 2010]

Motivation Basics Stereo Correspondence Algorithms Improvements for Human-to-Robot Handover Future Work

2 basic approaches:

- local
 - Window based
 - Fast, simple, sensitive to noise and occlusion [Olofsson, A. 2010]

- global
 - For whole image at once
 - Better in noise/occlusion handling [Olofsson, A. 2010]

Focus on local

Cost is needed

Basics

▶ F.e. pixel, compute cost accord. to each possible disparity $C(x_1, y_1, 0)$

_						
ſ					R	
	/	Ľ	6	aaaa	ana.	
Γ	1	(8 ⁹)	1			
1/		7.			m	
	1	L.	22			

Cost is needed

Basics

▶ F.e. pixel, compute cost accord. to each possible disparity

 $C(x_1, y_1, 0), C(x_1, y_1, 1)$

				R
		60	iaia	
	69/			
	1	192		M
317	and and a	23		

Motivation

Stereo Correspondence

Improvements for Human-to-Robot

Future Work

Cost is needed

Basics

▶ F.e. pixel, compute cost accord. to each possible disparity

 $C(x_1, y_1, 0), C(x_1, y_1, 1), C(x_1, y_1, 2)$

Cost is needed

Basics

▶ F.e. pixel, compute cost accord. to each possible disparity

 $C(x_1, y_1, 0), C(x_1, y_1, 1), C(x_1, y_1, 2), C(x_1, y_1, 3)$

Basics

Cost is needed

▶ F.e. pixel, compute cost accord. to each possible disparity

 $C(x_1, y_1, 0), C(x_1, y_1, 1), C(x_1, y_1, 2), C(x_1, y_1, 3), C(x_1, y_1, 4)$

		1000	auta			
	69/	4		1P/		
	7 ₁₄			m		
84	A.	23		La		

Window centered at pixel

Basics

Taking neighbors into account

Image (DSI) For each pixel

Motivation

Basics

Stereo Corresponden

Improvements for Human-to-Robot Handov

Future Work

Example window-based cost computation

[Olofsson, A. 2010]

Stereo Correspondence Algorithms

Stereo Correspondence Algorithms

3 different approaches to compute the **matching cost**:

(Sum of) Absolute Intensity Difference $C_{SAD}(x, y, d)$

Deep Learning Approach [Luo, W. et al., 2016]

Efficient Large-Scale-Stereo-Matching (ELAS) [Geiger, A. 2012]

Motivation

Stereo Correspondence Algorithms

Improvements for Human-to-Robot Hando

Future Work

Absolute Intensity Difference (AD): $C_{AD}(x, y, d) = |I_L(x, y) - I_R(x - d, y)|$

▶ (Sum of) = Window-based

Sum of AD: $C_{SAD}(x, y, d) = \sum_{(u,v) \in N(x,y)} |I_L(u, v) - I_R(u - d, v)|$

▶ With Neighborhood N(x,y) of (x,y)

Motivation

Stereo Correspondence Algorithms

Improvements for Human-to-Robot Handov

Future Work

Absolute Intensity Difference (AD): $C_{AD}(x, y, d) = |I_L(x, y) - I_R(x - d, y)|$

▶ (Sum of) = Window-based

Sum of AD: $C_{SAD}(x, y, d) = \sum_{(u,v) \in N(x,y)} |I_L(u, v) - I_R(u - d, v)|$

► With Neighborhood N(x,y) of (x,y)

Motivation

Stereo Correspondence Algorithms

Improvements for Human-to-Robot Handov

Future Work

Absolute Intensity Difference (AD): $C_{AD}(x, y, d) = |I_L(x, y) - I_R(x - d, y)|$

▶ (Sum of) = Window-based

Sum of AD: $C_{SAD}(x, y, d) = \sum_{(u,v) \in N(x,y)} |I_L(u,v) - I_R(u - d, v)|$

With Neighborhood N(x,y) of (x,y)

Stereo Correspondence Algorithms

Pros: Fast, simple. According to [Scharstein, D. et al., 2002] one of the fastest classical approach.

Cons: Bad accuracy (place 8 of 20 according to Scharstein, D.

Motivation

Stereo Correspondence Algorithms

Improvements for Human-to-F

Future Work

Pros: Fast, simple. According to [Scharstein, D. et al., 2002] one of the fastest classical approach.

 Cons: Bad accuracy (place 8 of 20 according to [Scharstein, D. et al., 2002])

[Luo, W. et al., 2016]

Put one image patch, centered at pixel (x,y) as input (9x9)

Put an image patch, of size (max_disparity,9) as sec. input

Network computes in one iteration, the cost for all given disparities

- Put one image patch, centered at pixel (x,y) as input (9x9)
- Put an image patch, of size (max_disparity,9) as sec. input

Network computes in one iteration, the cost for all given disparities

Motivation

Stereo Correspondence Algorithms

Improvements for Human-to-R

Future Worl

- Training:
 - Random image patches from the Kitti dataset
 - Cross entropy loss for multi class classification (disparities)
 - 6.5 hours training

Testing/Benchmarking:

On Kitti and Middleburry dataset

Motivation

Stereo Correspondence Algorithms

Improvements for Human-to-Ro

Future Worl

- Training:
 - Random image patches from the Kitti dataset
 - Cross entropy loss for multi class classification (disparities)
 - 6.5 hours training

- Testing/Benchmarking:
 - On Kitti and Middleburry dataset

Motivation

Stereo Correspondence Algorithms

Improvements for Human-to-F

Future Work

- Pros:
 - Very fast, compared to other learning approaches (1sec on NVIDIA Titan-X)
 - As accurate as other learning approaches

Cons:

- No comparison to non learning state-of-the art approaches
- After calculation, cost aggregation, smoothing done (time consuming)
- No CPU runtime

Motivation

Stereo Correspondence Algorithms

Improvements for Human-to-Ro

Future Work

- Pros:
 - Very fast, compared to other learning approaches (1sec on NVIDIA Titan-X)
 - As accurate as other learning approaches

Cons:

- No comparison to non learning state-of-the art approaches
- After calculation, cost aggregation, smoothing done (time consuming)
- No CPU runtime

Efficient Large-Scale-Stereo-Matching (ELAS) [Geiger, A. 2012]

Motivation

Stereo Correspondence Algorithms

hms Improvements for H

er Future W

- Not trying to find matching f.e. pixel in first run
- They can be ambiguous
- Find robust matchings with matching support points algorithm
- These pixels: support points
- Find support points by calc. L1-distance between feature vectors
- Using this support points to calc. the remaining matchings

Efficient Large-Scale-Stereo-Matching (ELAS) [Geiger, A. 2012]

Motivation

Stereo Correspondence Algorithms

hms Improvements for H

dover Future

- Not trying to find matching f.e. pixel in first run
- They can be ambiguous
- Find robust matchings with matching support points algorithm
- ► These pixels: **support points**
- Find support points by calc. L1-distance between feature vectors
- Using this support points to calc. the remaining matchings

Efficient Large-Scale-Stereo-Matching (ELAS) [Geiger, A. 2012]

Motivation

Stereo Correspondence Algorithms

nms Improvements for Hu

landover Futu

- Not trying to find matching f.e. pixel in first run
- They can be ambiguous
- Find robust matchings with matching support points algorithm
- ► These pixels: **support points**
- Find support points by calc. L1-distance between feature vectors
- Using this support points to calc. the remaining matchings
Efficient Large-Scale-Stereo-Matching (ELAS) [Geiger, A. 2012]

Motivation

Stereo Correspondence Algorithms

lgorithms Improvements f

provements for Human-to-Robot Handov

Future Work

Pros:

- Very fast, (0.7 sec on i7 CPU with 2.66 GHz)
- Performs well on higher resolution images (900x750)
- Better accuracy than other state-of-the-art approaches

Cons:

- Non trivial algorithm
- 0.7 sec maybe to slow for human-robot-handover

Efficient Large-Scale-Stereo-Matching (ELAS) [Geiger, A. 2012]

Stereo Correspondence Algorithms

iCub using ELAS [Nguyen, P. D., et al. 2018]

Motivation

Stereo Correspondence Algo

Improvements for Human-to-Robot Handove

- All 3 approaches can be used in real-time applications
- With powerful hardware (except SAD)
- Maybe this is not given for some humanoid robots
- Focusing on creating a good disparity map for each pixel
- They are also focusing on handling noise (except SAD)
- But we don't need both (at least not so much)
- We only need the pixels corresponding to object
- We don't need to consider a lot of different disparities
- Only objects which are nearer than approx. 30cm

Motivation

Stereo Correspondence Algori

Improvements for Human-to-Robot Handove

- All 3 approaches can be used in real-time applications
- With powerful hardware (except SAD)
- Maybe this is not given for some humanoid robots
- Focusing on creating a good disparity map for each pixel
 They are also focusing on handling noise (except SAD)
- But we don't need both (at least not so much)
- We only need the pixels corresponding to object
- We don't need to consider a lot of different disparities
- Only objects which are nearer than approx. 30cm

Motivation

Stereo Correspondence Algori

Improvements for Human-to-Robot Handove

- All 3 approaches can be used in real-time applications
- With powerful hardware (except SAD)
- Maybe this is not given for some humanoid robots
- Focusing on creating a good disparity map for each pixel
- They are also focusing on handling noise (except SAD)
- But we don't need both (at least not so much)
- We only need the pixels corresponding to object
- We don't need to consider a lot of different disparities
- Only objects which are nearer than approx. 30cm

We need 3 things:

1. Object detection and tracking (create **bounding box**)

Improvements for Human-to-Robot Handover

- 2. Cutting out the bounding box
- 3. Use $z = \frac{T \cdot f}{d}$ to calc. disparity boundaries

We need 3 things:

1. Object detection and tracking (create **bounding box**)

Improvements for Human-to-Robot Handover

- 2. Cutting out the bounding box
- 3. Use $z = \frac{T \cdot f}{d}$ to calc. disparity boundaries

Motivation

Stereo Correspondence A

Improvements for Human-to-Robot Handover

Future Work

Object Detection (YOLOv3)[Redmon, J., 2018]

Has to be done once at the beginning

- After that, tracking
- Object Tracking (CSRT)[OpenCV]
 Fast and accurate tracking

Motivation

Stereo Correspondence

ns Improvements for Human-to-Robot Handover

Future Work

- Object Detection (YOLOv3)[Redmon, J., 2018]
 - Has to be done once at the beginning
 - After that, tracking
- Object Tracking (CSRT)[OpenCV]
 Fast and accurate tracking

Motivation

Stereo Correspondence A

Improvements for Human-to-Robot Handover

Future Work

- Object Detection (YOLOv3)[Redmon, J., 2018]
 - Has to be done once at the beginning
 - After that, tracking

Object Tracking (CSRT)[OpenCV]

Fast and accurate tracking

Motivation

Stereo Correspondence

Improvements for Human-to-Robot Handover

Future Work

- Object Detection (YOLOv3)[Redmon, J., 2018]
 - Has to be done once at the beginning
 - After that, tracking
- Object Tracking (CSRT)[OpenCV]
 - Fast and accurate tracking

Cutting out the bounding box

Motivation

Stereo Correspondence Al

Improvements for Human-to-Robot Handover

Future Work

Full view

Cutting out the bounding box

Motivation

Stereo Correspondence Algo

Improvements for Human-to-Robot Handover

Future Work

Cut out view

Full view

Cutting out the bounding box

Motivation

Stereo Correspondence Algo

Improvements for Human-to-Robot Handover

Future Work

Cut out view

Full view

- Detection runtime: approx 2 sec
- x coordinates important for disparity

Motivation

Stereo Correspondence Algorithms

Improvements for Human-to-Robot Handover

Future Work

Original image left [Middlebury Dataset]

Original image right [Middlebury Dataset]

Motivation

Stereo Correspondence

Improvements for Human-to-Robot Handover

Future Work

ELAS [Geiger, A. 2012]

Motivation

Stereo Correspondenc

Improvements for Human-to-Robot Handover

Future Worl

ELAS [Geiger, A. 2012]

size: 224x376 (approx 3 times smaller)

SAD

Motivation

Stereo Correspondence Ale

Improvements for Human-to-Robot Handover

Future Work

- ► SAD:
 - Big: 0.014 sec
 - Small: 0.006 sec (2 times faster)

► ELAS:

- Big: 0.24 sec
- Small: 0.06 sec (4 times faster)
- Time to cut out: 0.0005 sec

- Knowing T, f and max. reachable dist. z_{max} :
- ► Calc. smallest disparity $d_{min} = \frac{T \cdot f}{Z_{max}}$
- Similar to smallest distance z_{min}

$$z = \frac{T \cdot f}{d}$$
$$d = \frac{T \cdot f}{z}$$

- Knowing T, f and max. reachable dist. z_{max} :
- ► Calc. smallest disparity $d_{min} = \frac{T \cdot f}{z_{max}}$
- Similar to smallest distance *z_{min}*

Motivation

Stereo Correspondence Al

Improvements for Human-to-Robot Handover

Future Work

- 1. (*)Calibrate the cameras
- 2. Get both video streams from the cams
- 3. Rectify the frames
- (*)At some frame, detect the object in both frames (YOLOv3 approx. 2 sec)
- 5. Track it (CSRT approx. 0.05 sec)
- 6. Cut out the BB (approx. 0.0005 sec)
- Stereo Correspondence Algorithm (SAD: between 0.006 and 0.014 sec)
- 8. Calculate the depth of the nearest pixels

Motivation

Stereo Correspondence Alg

Improvements for Human-to-Robot Handover

Future Work

- 1. (*)Calibrate the cameras
- 2. Get both video streams from the cams
- 3. Rectify the frames
- (*)At some frame, detect the object in both frames (YOLOv3 approx. 2 sec)
- 5. Track it (CSRT approx. 0.05 sec)
- 6. Cut out the BB (approx. 0.0005 sec)
- Stereo Correspondence Algorithm (SAD: between 0.006 and 0.014 sec)
- 8. Calculate the depth of the nearest pixels

Motivation

Stereo Correspondence Alg

Improvements for Human-to-Robot Handover

Future Work

- 1. (*)Calibrate the cameras
- 2. Get both video streams from the cams
- 3. Rectify the frames
- (*)At some frame, detect the object in both frames (YOLOv3 approx. 2 sec)
- 5. Track it (CSRT approx. 0.05 sec)
- 6. Cut out the BB (approx. 0.0005 sec)
- Stereo Correspondence Algorithm (SAD: between 0.006 and 0.014 sec)
- 8. Calculate the depth of the nearest pixels

Motivation

Stereo Correspondence Alg

Improvements for Human-to-Robot Handover

Future Work

- 1. (*)Calibrate the cameras
- 2. Get both video streams from the cams
- 3. Rectify the frames
- (*)At some frame, detect the object in both frames (YOLOv3 approx. 2 sec)
- 5. Track it (CSRT approx. 0.05 sec)
- 6. Cut out the BB (approx. 0.0005 sec)
- Stereo Correspondence Algorithm (SAD: between 0.006 and 0.014 sec)
- 8. Calculate the depth of the nearest pixels

Motivation

Stereo Correspondence Alg

Improvements for Human-to-Robot Handover

Future Work

- 1. (*)Calibrate the cameras
- 2. Get both video streams from the cams
- 3. Rectify the frames
- (*)At some frame, detect the object in both frames (YOLOv3 approx. 2 sec)
- 5. Track it (CSRT approx. 0.05 sec)
- 6. Cut out the BB (approx. 0.0005 sec)
- Stereo Correspondence Algorithm (SAD: between 0.006 and 0.014 sec)
- 8. Calculate the depth of the nearest pixels

Motivation

Stereo Correspondence Alg

Improvements for Human-to-Robot Handover

Future Work

- 1. (*)Calibrate the cameras
- 2. Get both video streams from the cams
- 3. Rectify the frames
- (*)At some frame, detect the object in both frames (YOLOv3 approx. 2 sec)
- 5. Track it (CSRT approx. 0.05 sec)
- 6. Cut out the BB (approx. 0.0005 sec)
- Stereo Correspondence Algorithm (SAD: between 0.006 and 0.014 sec)
- 8. Calculate the depth of the nearest pixels

Motivation

Stereo Correspondence Alg

Improvements for Human-to-Robot Handover

Future Work

- 1. (*)Calibrate the cameras
- 2. Get both video streams from the cams
- 3. Rectify the frames
- (*)At some frame, detect the object in both frames (YOLOv3 approx. 2 sec)
- 5. Track it (CSRT approx. 0.05 sec)
- 6. Cut out the BB (approx. 0.0005 sec)
- 7. **Stereo Correspondence** Algorithm (SAD: between 0.006 and 0.014 sec)
- 8. Calculate the depth of the nearest pixels

Motivation

Stereo Correspondence Alg

Improvements for Human-to-Robot Handove

Future Work

- 1. (*)Calibrate the cameras
- 2. Get both video streams from the cams
- 3. Rectify the frames
- (*)At some frame, detect the object in both frames (YOLOv3 approx. 2 sec)
- 5. Track it (CSRT approx. 0.05 sec)
- 6. Cut out the BB (approx. 0.0005 sec)
- 7. **Stereo Correspondence** Algorithm (SAD: between 0.006 and 0.014 sec)
- 8. Calculate the depth of the nearest pixels

Calibrate the cameras of NICO

Apply different SC algorithms

- Check for runtime
- Check for distance accuracy
- Check for different resolutions
- Try to implement a handover
 - Detect object in scene
 - Calculate (x,y,z) coordinates of object
 - Implement inverse kinematic to determine motor positions
 - Detect the moment the object is placed in the hand
 - Close the hand

Calibrate the cameras of NICO

Apply different SC algorithms

- Check for runtime
- Check for distance accuracy
- Check for different resolutions

Try to implement a handover

- Detect object in scene
- Calculate (x,y,z) coordinates of object
- Implement inverse kinematic to determine motor positions
- Detect the moment the object is placed in the hand
- Close the hand

Calibrate the cameras of NICO

Apply different SC algorithms

- Check for runtime
- Check for distance accuracy
- Check for different resolutions

Try to implement a handover

- Detect object in scene
- Calculate (x,y,z) coordinates of object
- Implement inverse kinematic to determine motor positions
- Detect the moment the object is placed in the hand
- Close the hand

Apply different SC algorithms

Check for runtime

Future Work

- Check for distance accuracy
- Check for different resolutions

Try to implement a handover

- Detect object in scene
- Calculate (x,y,z) coordinates of object
- Implement inverse kinematic to determine motor positions
- Detect the moment the object is placed in the hand
- Close the hand

Apply different SC algorithms

Check for runtime

- Check for distance accuracy
- Check for different resolutions
- Try to implement a handover
 - Detect object in scene
 - Calculate (x,y,z) coordinates of object
 - Implement inverse kinematic to determine motor positions
 - Detect the moment the object is placed in the hand
 - Close the hand

Apply different SC algorithms

Check for runtime

- Check for distance accuracy
- Check for different resolutions
- Try to implement a handover
 - Detect object in scene
 - Calculate (x,y,z) coordinates of object
 - Implement inverse kinematic to determine motor positions
 - Detect the moment the object is placed in the hand
 - Close the hand

Apply different SC algorithms

Check for runtime

Future Work

- Check for distance accuracy
- Check for different resolutions
- Try to implement a handover
 - Detect object in scene
 - Calculate (x,y,z) coordinates of object
 - Implement inverse kinematic to determine motor positions
 - Detect the moment the object is placed in the hand
 - Close the hand

- Geiger, A., Lenz, P., Urtasun, R. (2012, June). Are we ready for autonomous driving? the kitti vision benchmark suite. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on (pp. 3354-3361). IEEE.
- Nguyen, D. H. P., Hoffmann, M., Roncone, A., Pattacini, U., Metta, G. (2018, February). Compact Real-time avoidance on a Humanoid Robot for Human-robot Interaction. In Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction (pp. 416-424). ACM.
- Olofsson, A. (2010). Modern stereo correspondence algorithms: investigation and evaluation.
- Scharstein, D., Szeliski, R. (2002). A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. International journal of computer vision, 47(1-3), 7-42.

Literature

- Geiger, A., Roser, M., Urtasun, R. (2010). Efficient large-scale stereo matching. In Computer Vision–ACCV 2010 (pp. 25-38). Springer, Berlin, Heidelberg.
- Luo, W., Schwing, A. G., Urtasun, R. (2016). Efficient deep learning for stereo matching. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 5695-5703).
- Redmon, J., Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767.
- https://www.inf.unihamburg.de/en/inst/ab/wtm/research/neurobotics/nico.html, 30.11.18

Literature

Future Work

Thank you for your attention. Any Questions?