
Technical Aspects of Multimodal Systems
Department of Informatics

L. Einig

Robot Practical Course
Assignment #4

This assignment should demonstrate the capabilities and difficulties of Probabilistic Road Map path
planning algorithms. Remember to update the repository files with git pull .

Task 4.1 Launching Example: After updating the repository, launch the new task setup with
roslaunch itr_rpc task_4.launch . You will see a map with a maze and a small blue robot. The

robot can move on the map but only within the white free space. Thus, it will try to achieve a
start position in free space, if launched on occupied space. Before launching the example script in with
rosrun itr_rpc dummy_prm.py , read what is supposed to happen in order to understand the visualization:

• The script moves the robot from the start position (1, 0) to the goal position (−1, −1).
• To achieve this, an intermediate point at (1, −1) is required.
• The point is checked for collision (green means free, red means collision).
• The connections between the points are checked for collision (same colors as points).
• Colliding lines and points will vanish after some time.
• The lines are fed into a graph.
• The shortest path is specified and highlighted in blue on the map.
• The path is executed.

There are many sleep commands in the code to make it easy to follow. Remove the commands after
you understood the process. They are commented with a FIXME tag.

Task 4.2 Escape: Escape the maze using a Probabilistic Road Map. Your extraction point is
(2.5, −4.5). You should find useful hints at the bottom of this sheet. Copy the example to your
script.py.

4.2.1 *Bonus*: Increase the difficulty and escape the more complex mazes within 2 minutes.

Hints:

Structure There is a predefined structure. Use it.
Points and lines There are classes for points and lines. Use them.
Solution drawing There is a function which draws your calculated solution in blue. Use it.
Path interpolating There is a function to interpolate the path between two points on a linear line. Use it!
Speed factor The function above has a speed factor.
Random The random library is very useful for doing things with random samples.
Permutation There are permutation algorithms available. You might want to use itertools .
Graph library There are graph libraries in python. networkx should be installed. If not,

PYTHONPATH=/usr/lib/python2.7 pip install --user networkx .

Difficulty Increase difficulty with roslaunch itr_rpc task_4.launch difficulty:=medium . Available difficul-
ties are: easy, medium, hard, honor student

Collision paths Turn of the drawing of colliding lines with roslaunch itr_rpc task_4.launch lines:=false .
This will probably speed up line collision checking.


