
Assignment 08

Machine Learning, Summer term 2018
Norman Hendrich, Marc Bestmann, Philipp Ruppel

June 04, 2018

Solutions due by June 10

Assignment 08.1 (Sparse Matrices, 5×0.5 points)

Very large matrices are often sparse, that is, many or even most matrix elements are zero. The
scipy.sparse module provides Python data structures for memory-efficient layout of sparse matrices
and a set of common linear algebra operations on the matrices.

a. Please read the documentation for the scipy.sparse module, docs.scipy.org/doc/scipy/
reference/sparse.html.

Why are there (seven) different types (bsr matrix . . . lil matrix) of sparse matrices? Explain
the memory layout of csr matrix.

b. Which of these classes is best for inserting new non-zero elements into an existing sparse
matrix? Which of these classes are best for matrix-vector dot products and matrix-matrix
multiplications? Why?

c. The sparsity of a matrix is defined as the ratio of zero matrix elements to the total number
of matrix elements. How can you calculate the sparsity of a matrix using the scipy API?

d. Generate a tridiagonal random matrix A of size n×n; that is, a matrix with random non-zero
elements only on its main diagonal and the first upper and lower diagonals.

e. Linear algebra operations are provided in the scipy.sparse.linalg module. Run spsolve() to
solve the linear equation A · x = b, where b = 11 is a vector of all ones.

Measure the memory usage and the execution time for different values of n (e.g. n =
10, 100, 1000, 10000, . . .) using both the sparse matrix representation and the ”traditional”
dense matrix represenation, e.g., by calling A.todense(). What is the largest value of n that
works on your computer?

Assignment 08.2 (Bag-of-Words Text Classification , 5×0.5 points)

The 20 Newsgroups data set is a collection of approximately 20.000 newsgroup documents, parti-
tioned across 20 different usenet newsgroups. It has become a popular data set for experiments in
text classification and clustering.

a. Please see scikit-learn.org/stable/tutorial/text_analytics/working_with_text_

data.html for a description of the dataset. First, download the four-newsgroups subset
from the full dataset:

from sklearn.datasets import fetch_20newsgroups

twenty_train = fetch_20newsgroups(

categories=[’alt.atheism’, ’comp.graphics’, ’sci.med’, ’soc.religion.charistian’],

shuffle=True, random_state=41 )

Play with twenty train to access the texts, the corresponding labels (newsgroup indices), and
the names of the newsgroups. How many texts have been loaded?

1



b. Follow the tutorial and use sklearn.feature extraction.text.CountVectorizer to tokenize and
generate the list of words from the training data. How many words were found? How do
you access the list of words? How do you find the numerical index of a word in the feature
vectors?

c. Continue the tutorial and train the MultinomialNB Bayes classifier using the feature vectors
generated by CountVectorizer. Test and classify a few texts (strings) of your own. Then
finish the tutorial with building the Pipeline and classify the texts from the test set.

d. What is the motivation for the stop words argument of CountVectorizer? Try running the
full example (including tokening, training the classifier, and running classification on the
test set) again when using stop worlds=’english’. How many words are found? What is the
performance (accuracy

e. Read the paragraph about term frequencies and normalization using TfidfTransformer or
TfidfVectorizer. What is the motivation for working with frequencies instead of word counts?

Assignment 08.3 (Text classification pipeline, 4×0.5 points)

Download the example Python scripts from scikit-learn.org/stable/auto_examples/text/

document_classification_20newsgroups.html. This again loads (a subset of or the complete)
20 newsgroups dataset, builds the dictonary and Tfidf frequencies, and then trains and runs several
classifiers from the sklearn library.

a. Run the script with the default settings and with the –report and –confusion matrix com-
mand line arguments. This uses the whole input texts for training and classification.

b. Repeat, but now with the –filtered argument. This removes the email headers, signatures, and
quoting from the input documents. Compare the classifier scores (e.g. accuracy, precision)
with the above runs.

c. Repeat with –all categories; this can take a while. (Note: Just uncomment the broken print).
Look at the confusion matrices. Can you explain some of the mispredictions?

d. Is any one classifier the clear winner for this task?

2


