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Assignment 04.1 (Probabilities, 1+2+2+2+3 points)

In this exercise, we analyze a simple artificial data-set on vaccination of children. A description
of the data is provided in the file vaccination.readme.txt.

a. Read the vaccination.csv data into your Python workspace. Determine the numbers of
boys/girls, age groups and olderSiblings. Visualize these numbers with bar plots.

b. We are interested in the marginal probabilities of individual values in our data. More
technically, we are interested in P (A = a), where a is a specific value of a random variable A.
The random variables correspond to the fields / column names in the data-set, for example,
A = gender and a = 1 (where 1 denotes “male”). We use short-hand P (a) for P (A = a).
P (a) can be estimated from the data using relative frequencies as follows:

P̂ =
rows with a

all rows

P̂ (a) denotes the empirical estimator of P (a) according to the data.

Calculate the empirical probabilities

– to have a vaccination against disease X,

– to live on the country side,

– to have at least one older sibling.

c. Preprocessing variables can help to better understand the data. A common preprocessing
step is to discretize continuous variables. For example, the variable height can be trans-
formed into a binary variable isTallerThan1Meter.

Calculate the following empirical probabilities:

– What is the probability to be taller than 1 meter?

– What is the probability to be heavier than 40 kg?

Another preprocessing step is the combination of variables. Calculate a variable diseaseYZ
which denotes whether a child has had either disease Y or Z or both of them. What is
P̂ (diseaseY Z)?

d. Conditional probabilities relate two or more variables. P (a | b) measures the probabil-
ity of a given that we know b. For example, P (diseaseX = 1 | vacX = 0) quantifies the
probability that someone has had disease X given that he/she was not vaccinated against
X.

P (a | b) can be estimated using relative frequencies as follows:

P̂ (a | b) =
rows with a and b

rows with b

Calculate the following probabilities:
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– P̂ (diseaseX | vacX = 0/1)

– P̂ (vacX | diseaseX = 0/1)

– P̂ (diseaseY | age = 1/2/3/4)

– P̂ (vacX | age = 1/2/3/4)

– P̂ (knowsToRideABike | vacX = 0/1)

where P̂ (a | b = 0/1) is shorthand for P̂ (a = 1 | b = 0) and P̂ (a = 1 | b = 1).

Visualize P̂ (diseaseY | age = 1/2/3/4) and P̂ (vacX | age = 1/2/3/4) as line plots with age
on the x-axis. What can you conclude from your results?

e. Finally, we take a closer look at the effects of vaccination. Calculate P̂ (diseaseY Z | vacX =
0/1) and compare it to P̂ (diseaseX | vacX = 0/1). What do you conclude from these
results? Now, condition additionally on age and calculate P̂ (diseaseY Z | vacX = 0/1, age =
1/2/3/4).

How sure are you that your estimates for P (diseaseY Z | vacX = 0/1, age = 1/2/3/4) are
accurate? What does this depend on?

Plot P̂ (diseaseY Z = 1 | vacX = 0, age = 1/2/3/4) and P̂ (diseaseY Z = 1 | vacX = 1, age =
1/2/3/4) as two lines in one figure with age on the x-axis and the probability on the y-axis.
What do you conclude from your plot?

Remark 1: The effects in (e) due to the confounding variable age are similar to what is known
as Simpson paradox. See here: http://en.wikipedia.org/wiki/Simpson%27s_paradox.

Remark 2: This artificial data-set was inspired by the KiGGS data-set (http://www.
kiggs-studie.de/english/survey/kiggs-baseline-study.html). Some people have
used this data-set for pro- blematic data analyses to make obscure claims about putative
side-effects of vaccination. For an example in German see here: http://www.efi-online.

de/wp-content/uploads/2014/01/UngeimpfteGesuender.pdf

Assignment 04.2 (Least-squares regression, 1+2+1+2+1 points)

In this exercise, you will implement the linear least-squares method for regression. (Note: we
have used polyfit() already, but here you are building the matrix and solving the equations
yourself. . . ).

a. Data preparation.

– Load reg1d.mat. Plot training and test data.

– Preprocess the training data by concatenating 1 (for the bias term) to each training
point.

b. Learning

– Write a function least squares(X, Y) which computes the weight vector of the least-
squared solution for input points X ∈ IRn×d with target values Y ∈ IRn×1, where n
denotes the number of points and d is the number of features (dimensions per point).

– Calculate w using least squares(X, Y) for the given training data. Plot the prediction
of the resulting classifier into your previous plot.

c. Evaluation

– Write a function err = lossL2(Y, Y pred) which returns the empirical squared error
of predicting Y pred instead of Y .

– What is the average L2 loss of the classifier on the test data?
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d. Non-linear features

– Add quadratic and cubic basis functions to your input features (add new columns for
x2 and x3 in addition to x and 1).

– Re-run learning and evaluation.

e. Outlier

– Add an extreme outlier to your training data:

X_train = numpy.append( X_train, 1.05 )

Y_train = numpy.append( Y_train, -10 )

– Run your code to see its effect on linear least-squares regression.
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