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Assignment 04.1 (Probabilities, 142424243 points)

In this exercise, we analyze a simple artificial data-set on vaccination of children. A description
of the data is provided in the file vaccination.readme.txt.

a. Read the vaccination.csv data into your Python workspace. Determine the numbers of
boys/girls, age groups and olderSiblings. Visualize these numbers with bar plots.

b. We are interested in the marginal probabilities of individual values in our data. More
technically, we are interested in P(A = a), where a is a specific value of a random variable A.
The random variables correspond to the fields / column names in the data-set, for example,
A = gender and @ = 1 (where 1 denotes “male”). We use short-hand P(a) for P(A = a).
P(a) can be estimated from the data using relative frequencies as follows:
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P rows with a
all rows

P(a) denotes the empirical estimator of P(a) according to the data.

Calculate the empirical probabilities

— to have a vaccination against disease X,
— to live on the country side,
— to have at least one older sibling.
c. Preprocessing variables can help to better understand the data. A common preprocessing

step is to discretize continuous variables. For example, the variable height can be trans-
formed into a binary variable isTallerThanMeter.

Calculate the following empirical probabilities:

— What is the probability to be taller than 1 meter?
— What is the probability to be heavier than 40 kg?

Another preprocessing step is the combination of variables. Calculate a variable diseaseYZ
which denotes whether a child has had either disease Y or Z or both of them. What is
P(diseaseY Z)?

d. Conditional probabilities relate two or more variables. P(a|b) measures the probabil-
ity of a given that we know b. For example, P(discaseX = 1|vacX = 0) quantifies the
probability that someone has had disease X given that he/she was not vaccinated against
X.

P(a|b) can be estimated using relative frequencies as follows:

P(a 1b) = rows with a and b

rows with b

Calculate the following probabilities:



(diseaseX |vacX =0/1)
(vacX | diseaseX =0/1)
(diseaseY |age =1/2/3/4)
(vacX |age = 1/2/3/4)
— P(knowsToRideABike|vacX = 0/1)
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where P(a|b=0/1) is shorthand for P(a =1|b=0) and P(a =1|b=1).

Visualize P(diseaseY |age = 1/2/3/4) and P(vacX |age = 1/2/3/4) as line plots with age
on the z-axis. What can you conclude from your results?

. Finally, we take a closer look at the effects of vaccination. Calculate P(diseaseYZ |vacX =
0/1) and compare it to P(diseaseX |vacX = 0/1). What do you conclude from these
results? Now, condition additionally on age and calculate P(diseaseYZ |vacX =0/1,age =
1/2/3/4).

How sure are you that your estimates for P(diseaseY Z|vacX = 0/1,age = 1/2/3/4) are
accurate? What does this depend on?

Plot P(diseaseY Z = 1|vacX = 0,age = 1/2/3/4) and P(diseaseY Z = 1|vacX = 1,age =
1/2/3/4) as two lines in one figure with age on the z-axis and the probability on the y-axis.
What do you conclude from your plot?

Remark 1: The effects in (e) due to the confounding variable age are similar to what is known
as Simpson paradox. See here: http://en.wikipedia.org/wiki/Simpson%27s_paradox.

Remark 2: This artificial data-set was inspired by the KiGGS data-set (http://www.
kiggs-studie.de/english/survey/kiggs-baseline-study.html). Some people have
used this data-set for pro- blematic data analyses to make obscure claims about putative
side-effects of vaccination. For an example in German see here: http://www.efi-online.
de/wp-content/uploads/2014/01/UngeimpfteGesuender . pdf

Assignment 04.2 (Least-squares regression, 1+2+1+241 points)

In this exercise, you will implement the linear least-squares method for regression. (Note: we
have used polyfit() already, but here you are building the matrix and solving the equations
yourself. . . ).

a. Data preparation.

— Load regld.mat. Plot training and test data.

— Preprocess the training data by concatenating 1 (for the bias term) to each training
point.

b. Learning

— Write a function least_squares(X, Y) which computes the weight vector of the least-
squared solution for input points X € R™*? with target values Y € IR™*!, where n
denotes the number of points and d is the number of features (dimensions per point).

— Calculate w using least_squares (X, Y) for the given training data. Plot the prediction
of the resulting classifier into your previous plot.

c. Evaluation

— Write a function err = lossL2(Y, Y_pred) which returns the empirical squared error
of predicting Y_pred instead of Y.

— What is the average L2 loss of the classifier on the test data?



d. Non-linear features

— Add quadratic and cubic basis functions to your input features (add new columns for
2?2 and 23 in addition to x and 1).

— Re-run learning and evaluation.
e. Outlier
— Add an extreme outlier to your training data:

X_train = numpy.append( X_train, 1.05 )
Y_train = numpy.append( Y_train, -10 )

— Run your code to see its effect on linear least-squares regression.



