

MIN Faculty Department of Informatics

Topology-Aware Routing of Electric Wires in FDM-Printed Objects

Florens Wasserfall wasserfall@informatik.uni-hamburg.de

University of Hamburg TAMS

August 15, 2018

- 1. Introduction
- 2. Motivation
- 3. 2D-Routing
- 4. Inter-Layer connections
- 5. Wire collisions

Mission Statement

Introduction		

Full integration of electronic components and circuits into plastic objects in a single additive manufacturing process.

Mission Statement

Full integration of electronic components and circuits into plastic objects in a single additive manufacturing process.

+ Keep it low-cost!

Introduction

Motivation

2D-Routing

Inter-Layer connections

Wire collisions

Slight modifications...

Introduction

Motivation

2D-Routing

Inter-Layer connections

.

Conductive ink extruder

Introduction

Motivation

2D-Routing

Inter-Laver connections

Cameras

Introduction

Motivation

2D-Routing

Inter-Layer connections

Wire collisions

Vacuum gripper

Software tool-chain

Software tool-chain

Software tool-chain

Video

Introduction

Motivation

2D-Routing

Inter-Layer connections

Wire collisions

- Align with object geometry
- Changing process parameters (extrusion width, perimeters, ...)
- Align with wires
- Interlayer connections

Align with object geometry

- Changing process parameters (extrusion width, perimeters, ...)
- Align with wires

Interlayer connections

- Align with object geometry
- Changing process parameters (extrusion width, perimeters, ...)
- Align with wires
- Interlayer connections

- Align with object geometry
- Changing process parameters (extrusion width, perimeters, ...)
- Align with wires
- Interlayer connections

- Align with object geometry
- Changing process parameters (extrusion width, perimeters, ...)
- Align with wires
- Interlayer connections

VLSI- / PCB-Routing??

	2D-Routing	

VLSI- / PCB-Routing??

Motivation

Introduction

VLSI / PCB	3D-printed
Many components	Few components
Many connections	Few connections
Few layers	Many layers
High resolution	Low resolution
Simple geometries (PCB)	complex geometries (mesh)
"Process for circuit"	"Circuit for process"
Direct Z-Interconnects	?

2D-Routing

Result for a single wire

 Assemble routing-graph

2D-Routing

- Existing contours
- Direct rubberband connections
- Infill-Grid
- ► A* routing

2D-Routing

Inter-Layer co

Wire collisions

Assemble routing-graph

- Existing contours
- Direct rubberband connections
- Infill-Grid
- ► A* routing

Assemble routing-graph
Existing contours

2D-Routing

- Direct rubberband connections
- Infill-Grid
- A* routing

- Assemble routing-graph
- Existing contours
- Direct rubberband connections
- Infill-Grid
- ► A* routing

Inter-Layer connections

- Direct linear connections
- Dynamically exploring connections

Inter-Layer connections

Inter-Layer connections

Wire collisions

- Direct linear connections
- Dynamically exploring connections

Dynamically exploring connections

Dynamically exploring connections

Overlapping wire segments

Introduction Motivation 2D-Routing Inter-Layer connections Wire collis $7 = 3 4$	tion 2D-Routing Inter-Layer connections Wire collisions
7 = 3 A	

Result

Introduction Motivation 2D-Routing Inter-Layer connections Wire collisions

Wire collisions

Wire collisions

ntroduction

Motivation

2D-Routing

Inter-Layer connection

Wire collisions

Download / Sourcecode:

tams.informatik.uni-hamburg.de/research/3d-printing/conductive_printing

github.com/platsch/Slic3r