

MIN Faculty Department of Informatics

Adaptive Pouring of Liquids with a Robotic Arm Master Thesis Colloquium

Jeremias Hartz

University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems

08. Mai 2018

- 1. Motivation
- 2. Related Work
- 3. Concept
- 4. Experiments
 - Setup and Execution
- 5. Human Trajectories
 - Trajectory Preparation Trajectory Analysis Data
- 6. Moving the UR5 Arm
 - Implementation Basis Speed and Smoothness
- 7. Conclusion and References

Pouring liquids

Industrial Applications

- Dangerous liquid/environment
- High precision/efficiency required

Oil changes could be automated¹

Intelligent prosthetic arms could pour on its own²

 $^{1} {\tt https://upload.wikimedia.org/wikipedia/commons/6/68/SIGAUS_aceite.jpg}$

²https://c1.staticflickr.com/4/3831/12326026754_d979df9a14_b.jpg

J. Hartz - Adaptive Pouring of Liquids with a Robotic Arm

Mixing Cocktails

- Masterproject 16/17 at TAMS
 - Minimal pouring amount too high
 - Not esthetically pleasing enough

Robot Bartender at TAMS

Robotic arms

Advantages

- Extremely versatile
 - Different tasks executable
 - Liquid containers replacable
 - Move by themselves

Pouring alternatives, precise but not as flexible¹

¹https://c1.staticflickr.com/8/7417/9346264212_a0b2b05781_b.jpg

Using Force Sensors

- Learning by demonstration
- Generating dynamic pouring model

Force-based learning using Parametric Hidden Markov Models [Rozo, 2013]:

- Input: force, joint states at time t
- Output: joint states at t + 1
- Not tested with real liquid
- Trained only by remote control
- Retraining for different bottle shapes needed
- + Fast once trained

Using Liquid Simulation

- Models of liquids, prediction of deformation over time
- Generating paths with liquid constraints
- Exact models of liquid containers needed

Algorithm for planning a collision-free trajectory for pouring [Pan, 2016]:

- Trajectories are generated and optimized
- Final trajectory: $E^*(Q^C) = c_{obstacles}(Q^C) + c_{smoothing}(Q^C) + c_{liquid}(Q^C)$
- Liquid body trajectory: $Q^L = (q_1^T q_2^T ... q_N^T)^T$
- Evaluation of Q_L with N = 1000 almost 1h

Learning spillage minimization[Lopez, 2017]:

Combination of simulation and live feedback

Simplified liquid simulation for computation saving

Related Work

Motivation

- 1. Calibration of simulation parameters (Particle number, cohesion)
 - Pour with real robot
 - Measure real spillage
 - Adjust parameters to match sim. spillage
- 2. Pour, measure spillage, optimize
- Simulation
- Spillage feedback
- Both

Spillage over iterations

- Always initial amount = poured amount

Related Work

Motivation

Work Concept

riments Huma

Human Trajectories

R5 Arm Conclusion and Refe

Precise Dispensing of Liquids Using Visual Feedback [Kennedy, 2017]:

- Using camera and Apriltag to measure poured liquid
- No simulation

Input parameters for controller:

- Circular/rectangular shape/opening
- Angle
- Liquid amount poured
- Only transparent container
- Only colored liquid

Liquid amount measured by image processing

Learning to pour from video demonstration [Sermanet, 2017]:

- Time-Contrastive Networks
- ▶ 2 Videos: 1st and 3rd person view
- Learning from video comparison
- Trying to imitate movements
- Optimizing through reinforcement learning
- Not very precise
- Requires a lot training data for generic solutions

For optimization, often used in robotics in learning algorithms:

- Bayesian optimization [Sermanet, 2010]
 Unknown function (or too costly to calculate)
 Single data points available / computable
- 1. Generate (random) functions going through few data points
- 2. Merge into one function use more data points for optimization (Gaussian process often used for 1. and 2.)
- 3. Point selection for training at areas of interest

For simulating liquids:

Navier-Stokes equations

Hardware

- UR5 Robotic Arm
- Force-Torque Sensor
- USB Camera
- Bottles as pouring containers
- Glasses as receiving liquid containers

Software

- Linux Ubuntu 16.04
- C++ 11 and 14
- ROS version: Kinetic
- Simulation: Rviz
- Arm movement: Moveit
- Pouring interface: tams_ur5_bartender

Limitations

- No liquid simulation
 - Complex and resource costly
 - Simplified not precise enough
 - Exact shape of containers needed
- No liquid detection by camera
 - Liquids are mostly transparent
 - Liquid containers are often non-transparent
- Only bottle shapes

Goals

- Human-like movements
- Pouring exact amount specified (ml)
- No spillage
- Adapting to parameters without needing retraining

Motivation Related Work Concept Experiments Human Trajectories Moving the UR5 Arm Conclusion and References

Adaptive pouring

Automatically adjust output to a set of input parameters:

General idea

Input: Circles (Parameters), mg (real weight values for continuous improvement)

Output consisting of time, velocities, accelerations, a path

Concept and Input Parameters

Adaptive pouring

Automatically adjust output to a set of input parameters:

- 1. Location of bottle and glass
- 2. Height of bottle and glass
- 3. Collision Objects
- 4. Amount of liquid to be poured
- 5. Amount of liquid inside bottle
 - Weight of empty bottle
 - Total weight of bottle
- 6. Pouring type (normal/high)
- 7. Viscosity (syrup/water)

Motivation

nents Human Trajecto

ories Moving the UR5 Arm Conclusion and Referen

- 1. Location of bottle and glass
- ightarrow 2d camera image
- \rightarrow Feature detection (find_object_2d) for identifying and locating
- \rightarrow AprilTag for locating camera itself in respect to robot arm

- 1. Location of bottle and glass
- 2. Height of both liquid containers (bottle and glass)
- 3. Collision Objects
- \rightarrow Camera (infrared sensor/ feature detection)

- 1. Location of bottle and glass
- 2. Height of both liquid containers (bottle and glass)
- 3. Collision Objects
- 4. Amount of liquid that should be poured
- $\rightarrow \mathsf{Direct}/\mathsf{indirect} \ \mathsf{user} \ \mathsf{input}$
- \rightarrow Database: specified cocktail recipe

rajectories Moving the UR5 Arm Conclusion and Refe

- 1. Location of bottle and glass
- 2. Height of both liquid containers (bottle and glass)
- 3. Collision Objects
- 4. Amount of liquid that should be poured
- 5. Amount of liquid inside bottle
 - Weight of empty bottle
 - Total weight of bottle
- \rightarrow Database: identified by feature detection
- ightarrow Scale
- \rightarrow Force-torque sensor

- 1. Location of bottle and glass
- 2. Height of both liquid containers (bottle and glass)
- 3. Collision Objects
- 4. Amount of liquid that should be poured
- 5. Amount of liquid inside bottle
- 6. Pouring type (normal/high)
- \rightarrow Direct user input
- \rightarrow Random high for human likeness, given *pouringamount* > x

- 1. Location of bottle and glass
- 2. Height of both liquid containers (bottle and glass)
- 3. Collision Objects
- 4. Amount of liquid that should be poured
- 5. Amount of liquid inside bottle
- 6. Pouring type (normal/high)
- 7. Viscosity (syrup/water)
- \rightarrow Database: identified by feature detection
- ightarrow Force-torque sensor

- Trajectory for entire arm movement (not only pouring angle)
- Start with trajectories demonstrated by humans
 - Find general function
 - Find how function has to be changed with different inputs

Resulting questions

Can the robot arm play back human trajectories?

- How can a robot try to play them back?
 - How can human trajectories be recorded?
 - What exact information has to be recorded?

Human Trajectory Recording Setup

Motivation Related Work Concept Experiments Human Trajectories Moving the UR5 Arm Conclusion and Reference:

Needed Information

- Bottletop tracking
- Recording topics to rosbag:
 - Bottle position and rotation
 - Bottle weight
 - Video images for monitoring

Used Tools

Tracking cage + trackable markers

- 1. USB-Scale
- 2. 2 Bottles
- 3. Funnel
- 4. Glass
- 5. Container

Trajectory Recording Setup

Motivation

ted Work Conce

Experiments H

Human Trajectories

rm Conclusion and Reference

Trajectory Recording Configurations

			Experiments			
--	--	--	-------------	--	--	--

Configuration	Pour up to Marker X	Spout	Slow	High
1	1			
2	2			
3	3			
4	2		х	
5	3		х	
6	3			х
7	1	х		
8	2	х		
9	2	х		х
	Recorded configurations			
	13 rosbags total Emptied 39 bottle			

208 Valid samples so far (from 12 bags)

ated Work Concept Experiments Human Trajectories Moving the UR5 Arm Conclusion and Refer

How to recognize one pouring sample?

- Scale topic
 - Stable weight:
 - Weight stays the same X(=2) times (Rate: 1HZ)
 - Same weight = +/- 0.5 gram
 - 3 stable weights = current, previous, penultimate

Extract sample if no weight in between:

Condition on which a pouring sample ends

Automated Refill Detection / Error Finding

Motivation

xperiments Hu

Human Trajectories

Arm Conclusion and Referen

How to identify bottle refill?

trajectory.size() > 0 //1st fill is not a refill

Condition on which the bottle has been refilled

How to identify a failed sample?

- Bottle out of range (-x values)
- Bottle not tilted enough (< 45°)</p>
- No deletion, just mark as failed

Human Trajectories

Transformation of bottle points

- Goal: transform data into glass frame
 - 1. Record glass position

Recording glass pose

- 2. Retrieve glass position
- 3. Transform bottle points

Retrieve Glass Position

Motivation

ed Work Conc

eriments Humar

Moving the UR5 Arm Conclusion and F

rostopic echo /phasespace_ros/rigids
 rosbag play setup_glass.bag

🔘 🗇 😑 jere@jere-VirtualBox: ~	
header: Sec: 126803 Staro:	🛆 Interact 🕆 Move Camera 🛄 Select 🔶 Focus Camera 🚍 Measure 🖌 20 Pose Estimate 🥖 20 New Coal 💡 Publish Freist 🔶 — 🗸
sec: 1517645513 nsec: 763126435 frame_ld: "phasespace" data:	Plimpe phasespace camera_1
1. di: 1 nare: "bottle" rtag:: 6 pose:	
posttion: x: 0.15526750445 y: 0.44415573845 z: 0.571642133604	phasespace_camera_7
x: -0.364916598452 y: -0.649255692550 z: -0.6225418448967 M: -0.313189118101	phasespace, camera_3
Jeremjere-VirtualBox: -/ros/ros_ws_thesis/bags/experiment1 [RUMWING] Bag Time: 1517843513.945288 Duration: 4.930194 / 40.199139 [RUMWING] Bang Time: 1517843513.945280 Duration: 4.9401241 / 40.199139	
[RUNNING] Bag Time: 1517843513.956451 Duration: 4.941366 / 48.199139 [RUNNING] Bag Time: 1517843513.956925 Duration: 4.941839 / 48.199139 [RUNNING] Bag Time: 1517843513.961075 Duration: 4.946580 / 48.199139	camera_0 phasespace_demora_b phasespace_demora_b phasespace_came
[RUMNING] Bag Time: 1517843513.964134 Duration: 4.949849 / 48.199139 [RUMNING] Bag Time: 1517843513.965373 Duration: 4.950287 / 40.199139 [RUMNING] Bag Time: 1517843513.978153 Duration: 4.95087 / 48.199139	cage_table_top_link
[RUNNING] Bag Time: 1517843513.973169 Durd 8083 / 48.199139 [RUNNING] Bag Time: 1517843513.978213 Durd 3128 / 40.199139 [RUNNING] Bag Time: 1517843513.978674 Dura 31589 / 46.199139	phasespace
[RUWRING] Bag Time: 1517843513.981699 Dura 6613 / 40.199139 [RUWRING] Bag Time: 1517843513.980719 Dura 1633 / 40.199139 [RUWRING] Bag Time: 1517843513.980739 Dura 5174 / 40.199139 [RUWRING] Bag Time: 1517843513.990239 Dura 5174 / 40.199139	
[RUMWING] Bag Time: 1517845151,996232 DW atton: 4.081628 / 46.199139 [RUMWING] Bag Time: 1517845151,996733 Dwratton: 4.081628 / 46.199139 [RUMWING] Bag Time: 1517845151,996220 Dwratton: 4.98133 / 40.199139 [RUMWING] Bag Time: 1517845151,801275 Dwratton: 4.081190 / 46.199139	
[RUWNING] &bg]Tiwe: 1517843514.087154 [RUWNING] &bg]Tiwe: 1517843514.087154 [RUWNING] &bg]Tiwe: 1517843514.081495 [RUWNING] &bg]Tiwe: 1517843514.081495 [RUWNING] &bg]Tiwe: 1517843514.081495 [RUWNING] &bg]Tiwe: 1517843514.081495	cage_base_link

Reading glass frame pose for new frame of origin

Transformation in Rviz

Human Trajectories

- Transformed points as visualization markers
- Inserted glass mesh into URDF

Implementation

2 Nodes for analysis

Input Parameters

First Node

- Path of bag folder
- Array of bag names

Second Node

- Path to bag
 - Min/max pouring/intial amount
- Min pouring angle to display

elated Work Concept Experiments Human Trajectories Moving the UR5 Arm Conclusion and Refe

New .msg type for better filtering:

Trajectory.msg

```
tams_pour/PoseStampedArray stampedPoses
std_msgs/Bool valid
std_msgs/Bool person
std_msgs/Bool high
std_msgs/Bool slow
std_msgs/Bool bottleSpout
int32 initialAmount
int32 pouredAmount
```

Setting properties:

- person, high, slow and bottleSpout: configuration info
- initialAmount, pouredAmount and valid: fully automated

Motivation Related Work Concept Experiments Human Trajectories Moving the UR5 Arm Conclusion and References

Comparison Methods

Colors indicating changes in:

- Angle
- Poured amount
- Initial amount
- Time (relative vs total)
- Motion direction

Filter trajectories by:

- Initial amount
- Poured amount
- Other configuration properties

Implementing Live Comparing

Concept Experiments Human Trajectories Moving the UR5 Arm

User interface for live filtering

- Rosbrigde: Connection between JavaScript and C++
- Action server for communication:
 - \rightarrow Get available trajectories
 - \rightarrow Filter and display through rviz
- Selectable list of trajectories
- Slider for single point bottle mesh
- ► Integrate arm movement testing → Reuse tams_ur5_bartender

First filter interface idea

All Samples "Regular" Configuration

Motivation

oncept Exper

Human Trajectories

Arm Conclusion and Reference

All Samples from Configurations 1-3 (103)

Filter 1st Glass-Marker

Motivation

d Work Conc

eriments Huma

Human Trajectories

ving the UR5 Arm Conclusion and

Pouring: 0-70 ml (40 ml avg. - First Glass-Marker) Start Amount: 600-900 ml, Samples: 14

Filter 1st Glass-Marker

Motivation

d Work Cond

riments Humar

Human Trajectories

oving the UR5 Arm Conclusion

Pouring: 0-70 ml (40 ml avg. - First Glass-Marker) Start Amount: 300-600 ml, Samples: 17

Filter 1st Glass-Marker

Human Trajectories

Pouring: 0-70 ml (40 ml avg. - First Glass-Marker) Start Amount: 0-300 ml, Samples: 15

Filter 2nd Glass-Marker

Motivatio

elated Work

Concept Exc

iments Human

Human Trajectories

ving the UR5 Arm Conclusion a

Conclusion and References

Pouring: 70-220 ml (190 ml avg. - Second Glass-Marker) Start Amount: 600-900 ml, Samples: 10

Filter 2nd Glass-Marker

Motivatio

Work Concer

periments Hu

Human Trajectories

ne UR5 Arm Conclusion and Refe

Pouring: 70-220 ml (190 ml avg. - Second Glass-Marker) Start Amount: 300-600 ml, Samples: 09

Filter 2nd Glass-Marker

Motivatio

Work Conce

periments Hu

Human Trajectories

ng the UR5 Arm Conclusion and

Pouring: 70-220 ml (190 ml avg. - Second Glass-Marker) Start Amount: 0-300 ml, Samples: 07

Typical Sample from "High" Configuration

Human Trajectories Moving the UR5 Arm Conclusion and References

Implementing Trajectory Replaying

Related Work Co

Experiments I

Human Trajectories

Moving the UR5 Arm Conclusion and Reference

Pouring Node

Input Parameters

- Path of bag
- Filter: Every X point
- Min pouring angle to traverse
- Min distance between filtered points
- Min angle distance between filtered points
- Max distance between computed points

ivation Relate

Moving the UR5 Arm Co

Bottle trajectory and transformed trajectory for UR5 end-effector

Moving the UR5 Arm

Problems

Trim trajectories to pouring part

 \rightarrow filtering out all angles below X° in regards to the glass Another approach:

Pouring start/end detection with force-torque sensor

- \rightarrow Training needed
- Move arm to first point of trajectory
 - IK-Solution not always found
 - \rightarrow Test Bio-IK Solver

Constraints needed for testing with real liquids

 \rightarrow Integration into tams_ur5_bartender¹

 $^{^{1}} https://github.com/TAMS-Group/tams_ur5_bartender$

					Moving the UR5 Arm	
--	--	--	--	--	--------------------	--

- Arm can not move in original speed speed limits
- Jitter in original trajectories
- ► Only traverse through every 5/10/20/50/100 point → Still not fast enough
- ► Only 3 points: Start, lowest, end → Smooth, but still not fast enough

Moveit computes trajectory with maximum speed → Changing speed limits:

\$ roscd tams_ur5_setup_moveit_config/config
\$ xdg-open joint_limits.yaml

Set *max_acceleration* and *max_velocity* to max (around 3.0) Set *has_acceleration_limits* on all UR5 joints to *true*

- Given waypoints: 110
- Computed 97.27% in 11.23s
- Computed waypoints: 107
- Relative human time: 4.30s

Before (max speed = 0.5)

Robot time: 8.41s

After (max speed = max)

Robot time: 5.03s

Adjust to Original Duration

Motivation Related Work Concept Experiments Human Trajectories Moving the UR5 Arm Conclusion and References

Optimize waypoint filtering until robot time = original time

- Too fast in main pouring part of trajectory
- Not smooth even with $\sim 10\%$ of original points
- No visible improvement after using Quaternion.slerp()

Analyzing Original Speeds

Motivat

Related W

Concept

Experiments Hur

luman Trajectories 🛛 🛚

Moving the UR5 Arm Conclusion and Re

Other approach:

Split trajectory based on original speed and compute separately

Velocity of Bottletip over Time (Human) - Color changes with Z Position (Grey = Low)

Velocity over Time in Original Trajectory

Manual Cartesian Speed Changing

Setting new speeds for each joint:

- Time difference of original trajectory
- Joint distance to next angle
- Set Velocity/Acceleration

jointVel = jointDistToNextPoint / originTimeDiff; jointAcc = jointVel / originTimeDiff;

- Problem: Newly generated points
 Arm stops: Acceleration above max
- Limit acceleration, adjust velocity accordingly
 - \rightarrow Time behavior better, not smooth

Biggest challenges:

- Smooth trajectory while imitating human velocity profile
- Extracting parameters of pouring trajectory that have to be changed with different inputs
 - \rightarrow Dynamic motion primitives
- Final thoughts:
- Pouring is a wide field with many subtopics all has to be put together for a complete pouring task
 Working demo will be priority
- Human trajectory recording framework can be used on for Machine Learning

Thank You

[Rozo, 2013] L. Rozo and P. Jiménez and C. Torras (2013)

Force-based robot learning of pouring skills using parametric hidden Markov models 9th International Workshop on Robot Motion and Control 13(7), 227–232.

[Pan, 2016] Zherong Pan and Chonhyon Park and Dinesh Manocha (2016) Robot motion planning for pouring liquids Proceedings International Conference on Automated Planning and Scheduling, ICAPS 16(1), 518-526.

[Lopez, 2017] Tatiana Lopez-Guevara and Nicholas K Taylor and Michael U Gutmann and Subramanian Ramamoorthy and Kartic Subr (2017) Adaptable Pouring: Teaching Robots Not to Spill using Fast but Approximate Fluid Simulation Proceedings of Machine Learning Research 17(11), 77-86.

[Kennedy, 2017] M. Kennedy and K. Queen and D. Thakur and K. Daniilidis and V. Kumar (2017)

Precise dispensing of liquids using visual feedback 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 17(9), 1260-1266.

[Sermanet, 2017] Sermanet, Pierre and Lynch, Corey and Chebotar, Yevgen and Hsu, Jasmine and Jang, Eric and Schaal, Stefan and Levine, Sergey (2017)

Time-Contrastive Networks: Self-Supervised Learning from Video arXiv preprint arXiv:1704.06888.

[Sermanet, 2010] Eric Brochu and Vlad M. Cora and Nando de Freitas (2010) A Tutorial on Bayesian Optimization of Expensive Cost Functions, with Application to Active User Modeling and Hierarchical Reinforcement Learning http://arxiv.org/abs/1012.2599.