

MIN Faculty Department of Informatics

Sensor Driven Topology-Optimization for Additively Manufactured Humanoid Robotic Parts

Julian Deinert

University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems

July 10, 2018

- 1 Motivation
- 2 Fundamentals

3D-Printing FEA and Topology Optimization

- 3. Capturing Data
- 4. Optimization Process Tools Used
- 5. Results
- 6. Conclusion
- 7. Next Steps

vation Fu		
-----------	--	--

1. Motivation

Outline (cont.)

	· · · · · · · · · · · · · · · · · · ·				
Motivation					
7. Next	Steps				

Motivation

Current design

Bitbots' Wolves robot

- Design consists mostly of simple geometric shapes
 - Rectangular feet
 - Optimized for balance
- Legs and feet mainly made from aluminum and carbon parts
- All in all not ideal

Feet of the robot made out of aluminum and carbon

Improving the design

- AM already used to produce parts of the robot
- Why not use AM for feet and legs as well?
- Optimize the shape of the parts
 - \blacktriangleright Less material \rightarrow less weight
 - Less material \rightarrow faster printing
 - Faster printing \rightarrow higher availability
 - \blacktriangleright Organic structure \rightarrow nice to have

Topology Optimization

- Reveals optimal structure for given loads
 - Over-think space usage
 - cable management or motor placements
- Requires load constraints
 - Forces have to be measured
 - Useful for walking algorithms

|--|

1. Motivation

- 2. Fundamentals 3D-Printing FEA and Topology Optimization
- 3. Capturing Data
- 4. Optimization Process
- 5. Results

Outline (cont.)

	Fundamentals			
6 Conclu	sion			

7. Next Steps

Available printers

Fused Deposition Modeling (FDM)

- Prints using PLA or ABS filament
- Extrudes filament while moving a print head
- Heated print bed and chamber (ABS)
- builds from bottom to top

Stereolithography Apparatus (SLA)

- Prints using polymer resin
- uses UV light-source below a transparent build platform
- builds from top to bottom

Multijet/Polyjet

- Basically an inkjet printer
- Prints using photo-active polymers
- Cures using UV light-source
- Can use multiple materials in one print job
- builds from bottom to top

Fundamentals Capt

mization Process

Conclusion

Next Step

References

FDM Printer

- $+\,$ easy to fix and easy to extend
- + large enough print bed (20cm by 20cm)
- o moderate print time
- moderate accuracy

Fundamentals C

nization Process

Conclusion

ion Ne

References

SLA Printer

- + Very high resolution
- More expensive than FDM
- Setup is quite sophisticated
- Longer print times than FDM

Fundamentals Capi

nization Process

Conclusion

Next Ste

References

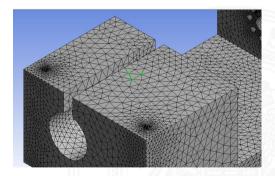
Multijet/Polyjet

- + Very high resolution
- + Support material can be added seamlessly
- Long print times
- Material is very pricey

timization Process

Finite Element Method or Analysis

- Numerical approach for solving physics problems
- Divide a complex problem into smaller simpler problems
- ► Also used for fluid dynamics, heat transfer etc.


Reference

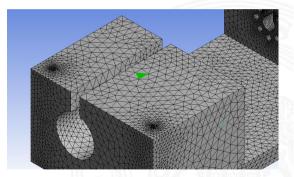
Terminology

Node

Element

- Mesh
- Degree of Freedom (DOF)
- ▶ Nodal displacement vector $\{d\}$ $\{D\}$
- ▶ Nodal load vector $\{f\}$ $\{F\}$
- ▶ Stiffness matrix [k] [K]

Meshed surface with three points of an element highlighted

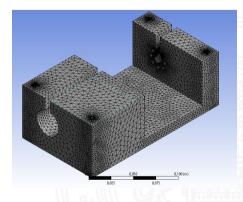

Reference

Terminology

Node

Element

- Mesh
- ▶ Degree of Freedom (DOF)
- ▶ Nodal displacement vector $\{d\}$ $\{D\}$
- ▶ Nodal load vector $\{f\}$ $\{F\}$
- ▶ Stiffness matrix [k] [K]



Meshed surface with a highlighted element of the mesh

Terminology

- ▶ Node
- Element
- Mesh
- Degree of Freedom (DOF)
- ▶ Nodal load vector $\{f\}$ $\{F\}$
- ▶ Stiffness matrix [k] [K]

Meshed surface of a 3d-modeled part

- Node
- Element
- Mesh
- Degree of Freedom (DOF)
- ▶ Nodal displacement vector $\{d\}$ $\{D\}$
- ▶ Nodal load vector $\{f\}$ $\{F\}$
- ▶ Stiffness matrix [k] [K]

- Node
- Element
- Mesh
- Degree of Freedom (DOF)
- Nodal displacement vector $\{d\}$ $\{D\}$
- ▶ Nodal load vector $\{f\}$ $\{F\}$
- ▶ Stiffness matrix [k] [K]

- Node
- Element
- Mesh
- Degree of Freedom (DOF)
- Nodal displacement vector $\{d\}$ $\{D\}$
- Nodal load vector $\{f\}$ $\{F\}$
- ▶ Stiffness matrix [k] [K]

- Node
- Element
- Mesh
- Degree of Freedom (DOF)
- Nodal displacement vector $\{d\}$ $\{D\}$
- Nodal load vector $\{f\}$ $\{F\}$
- Stiffness matrix [k] [K]

FEA Step by Step

- 1. Define problem
- 2. Create a simple model
- 3. Define loads and constraints
- 4. Meshing
- 5. Hand over to solver
- 6. Evaluate results

Solving using FEA

- 1. Define relation between loads and deformations $\{f\}_i = [k]_i \{d\}_i$
- 2. Link all relations through continuity constraints $\{F\} = [K]\{D\}$
- 3. Define boundary conditions $\{F_{BC}\} = [K_{BC}]\{D_{BC}\}$
- 4. Solve for displacement vector $\{D_{BC}\}$ $\{D_{BC}\} = [K_{BC}]^{-1} \{F_{BC}\}$

Solving using FEA

1. Define relation between loads and deformations $\{f\}_i = [k]_i \{d\}_i$

2. Link all relations through continuity constraints $\{F\} = [K]\{D\}$

- 3. Define boundary conditions $\{F_{BC}\} = [K_{BC}]\{D_{BC}\}$
- 4. Solve for displacement vector $\{D_{BC}\}$ $\{D_{BC}\} = [K_{BC}]^{-1}\{F_{BC}\}$

Solving using FEA

1. Define relation between loads and deformations $\{f\}_i = [k]_i \{d\}_i$

2. Link all relations through continuity constraints $\{F\} = [K]\{D\}$

- 3. Define boundary conditions $\{F_{BC}\} = [K_{BC}]\{D_{BC}\}$
- 4. Solve for displacement vector $\{D_{BC}\}$ $\{D_{BC}\} = [K_{BC}]^{-1} \{F_{BC}\}$

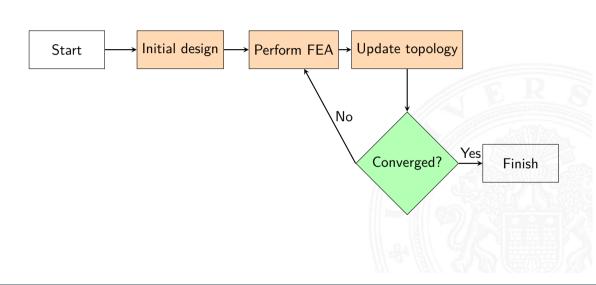
Reference

Solving using FEA

1. Define relation between loads and deformations $\{f\}_i = [k]_i \{d\}_i$

2. Link all relations through continuity constraints $\{F\} = [K]\{D\}$

- 3. Define boundary conditions $\{F_{BC}\} = [K_{BC}]\{D_{BC}\}$
- 4. Solve for displacement vector $\{D_{BC}\}$ $\{D_{BC}\} = [K_{BC}]^{-1} \{F_{BC}\}$



What is topology optimization?

- Optimization task
- Optimizes for minimal compliance/flexibility based on constraints
- Solves material distribution problem
- Iterative process

Motivation Fundamentals Capturing Data Optimization Process Results Conclusion

1. Motivation

- 2. Fundamentals
- 3. Capturing Data
- 4. Optimization Process

5. Results

6. Conclusion

Outline (cont.)

	· · · · · · · · · · · · · · · · · · ·				
		Capturing Data			
7 Nevt S					

Motivation	

s Capturing Data

Optimization Proc

imization Process

Conclusion

n Next

References

Servo efforts

- Effort of the servo motors captured during walking
- Peak effort for ankle roll was at 6.49Nm

Section of reported torques of the left ankle roll motor

Using a F/T-Sensor

- ATI Mini45 f/t-sensor was used
- Sensor was placed inside the foot and the leg
- Sensor reports forces in x-,y-direction up to 580N
- ▶ 1160N in z-direction
- ▶ Reports torque in x-,y-,z-direction up to 20Nm

М			

ntals Capturing Data

Optimization


Optimization Process

Conclusion

Next S

References

Using a F/T-Sensor

3D-printed foot with an ATI Mini45 $f/t\mbox{-sensor}$ between the top and the bottom part

М				

tals Capturing Data

Using a F/T-Sensor

Closer view of the sensor inside the foot

als Capturing Data

Optimization F

ptimization Process

Conclusion

Next

References

Using a F/T-Sensor

3D-printed leg consisting of two parts with an ATI Mini45 f/t-sensor connecting both parts

Capturing Data

amentals

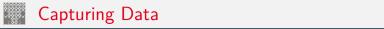
Capturing Data

Optimizatio

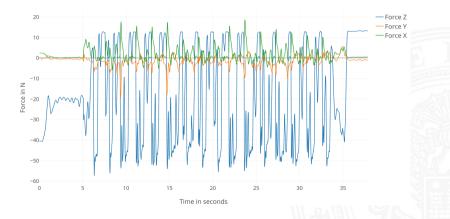
ptimization Process

Conclusion

sion N


References

Using a F/T-Sensor



Closer view of the sensor inside the leg

Using a F/T-Sensor

Graph showing forces in x-,y- and z-direction reported by the ATI Mini45 f/t-sensor

Using a F/T-Sensor

Graph showing torques in x-,y- and z-direction reported by the ATI Mini45 f/t-sensor

	0

ptimization Process

1. Motivation

- 2. Fundamentals
- 3. Capturing Data
- 4. Optimization Process Tools Used

5. Results

6. Conclusion

Outline (cont.)

	· · · · · · · · · · · · · · · · · · ·			
		Optimization Process		
7 Next S				

Tools Used

Optimization Process

- ANSYS Workbench suite
- ROS and Gazebo framework
- ► FDM printer
- ► Slic3r for slicing

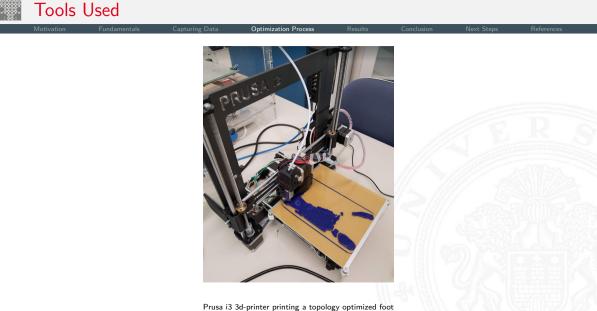
ANSYS Workbench

- Combines a variety of software solutions
 - CAD tools
 - Mathematical solver
 - Simulation tools
- Solutions are heavily integrated
- Workflow-like control flow

Motivation Fundamentals Capturing Data **Optimization Process** Results Conclusion Next Steps References

ROS and Gazebo framework

- ROS kinetic
- Simulation of falling, walking and idling
- Collecting data from simulation and motor values


Tools Used

		Optimization Process		

FDM Printer

- ▶ Prusa i3
- Printing of optimized parts

Optimization Process

Steps of the optimzation process

- 1. Modeling the part
- 2. Define loads and constraints
- 3. Run a FEA
- 4. Define design and exclusion regions
- 5. Define constraints
- 6. Run a topology optimization
- 7. Post process results

als	Capturing Data	Optimization Process	Results	Conclusion	Next Steps	Ref
-----	----------------	----------------------	---------	------------	------------	-----

Prerequisites

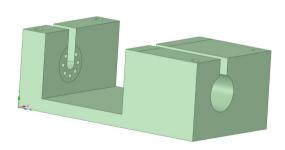
- Define material properties
- Add module to workflow

opert	ties of Outline Row 3: Polylactic acid		→ -□ ;	
	A	в	С	
1	Property	Value	Unit	
2	Density	1,24	g cm^-3	
3	🗉 🚰 Isotropic Elasticity			
4	Derive from	Young's Modulus and Poisson's Ratio		
5	Young's Modulus	ing's Modulus 3500		
6	Poisson's Ratio	0,36		
7	Bulk Modulus	4,1667E+09	Pa	
8	Shear Modulus	Shear Modulus 1,2868E+09		
9	🔁 Tensile Ultimate Strength	73	MPa	

Table showing the defined properties of polylactic acid inside ANSYS Workbench

Prerequisites

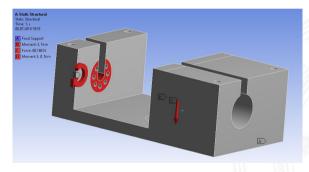
- Define material properties
- Add module to workflow



Static structural module with steps for a FEA inside ANSYS Workbench

Modeling the part

- Define large block of material
- Model in required design elements



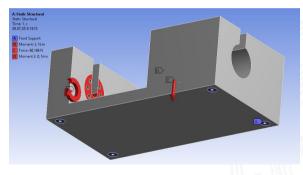
3D-Model of a foot for a robot designed to use the maximum amount of space available

Loads and Constraints

Defining loads and constraints

- Fixed support defined for the studs
- Torque and loads act on bearing and mounting face

Optimization Process

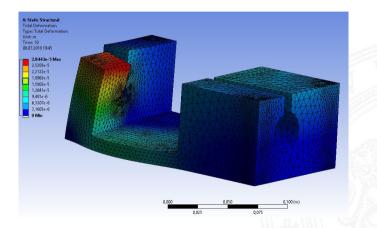

Model of the foot with torque and forces defined on faces in red

Loads and Constraints

Optimization Process

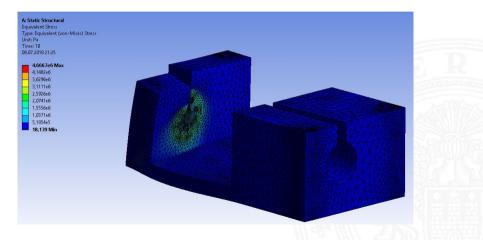
Defining loads and constraints

- Fixed support defined for the studs
- Torque and loads act on bearing and mounting face


Model of the foot with supported faces in blue

Performing a FEA

Run the FEA

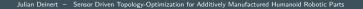


Results of the FEA showing deformation with blue being the least and red the most amount of deformation

Performing a FEA

Run the FEA

Results of the FEA showing stress with blue being the least and red the most amount of stress


Fundamentals 1e desigr	Capturing Data	Optimization Process	Results	Conclusion	Next Steps	References
B: Topology Optimiza Optimization Region Iteration Number: N/A0 08.07.2018 21:41					0	

Model of the foot showing areas that will not be touched by the optimization process in red and available area for optimization in blue

Define the response constraint for topology optimization

- Volume
- Mass
- Max deformation
- Max stress

Additional constraints

Motivation	Fundamentals	Capturing Data	Optimization Process	Results	Conclusion	Next Steps	References

Define additional constraints

- Additional response constraints
- Manufacturing constraints
 - Symmetry
 - Extrusion

Solve the topology optimization

- Can be computed concurrently
- Current state can be inspected

Modules of an optimization workflow linked together

Solve the topology optimization

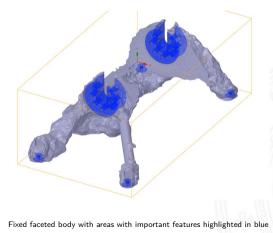
Result of the topology optimization showing a rough faceted body with a disconnected part

Motivation	Fundamentals	Capturing Data	Optimization Process	Results	Conclusion

- Optimization returns rough stl-file
- Faceted body needs to be checked for errors and disconnected parts
- Model is then shrink-wrapped
- Model can be smoothed further

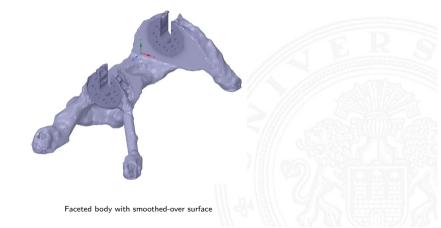
References

From optimized model to printable part

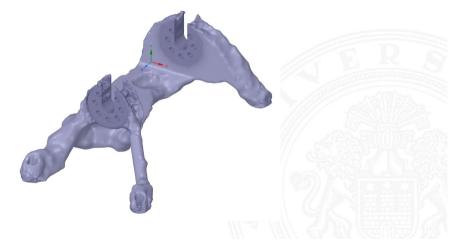

Result of the topology optimization showing a rough faceted body with a disconnected part

			Optimization Process				
--	--	--	----------------------	--	--	--	--

- Optimization returns rough stl-file
- Faceted body needs to be checked for errors and disconnected parts
- Model is then shrink-wrapped
- Model can be smoothed further



- Optimization returns rough stl-file
- Faceted body needs to be checked for errors and disconnected parts
- Model is then shrink-wrapped
- Model can be smoothed further.



Motivation	

Optimization Process

- Optimization returns rough stl-file
- Faceted body needs to be checked for errors and disconnected parts
- Model is then shrink-wrapped
- Model can be smoothed further

Faceted body with very high element count after additional smoothing

Optimization Proces

- 1. Motivation
- 2. Fundamentals
- 3. Capturing Data
- 4. Optimization Process
- 5. Results
- 6. Conclusion

Outline (cont.)

	· · · · · · · · · · · · · · · · · · ·				
			Results		
7 Next S					

- Print time: between 19 and 6 hours
- ► Filament used: slightly over 4m
- Weight:
 - 270g (original)
 - ▶ 148g (optimized)
 - 45% weight reduction
- Passed quick walking test

Optimized foot on a scale

MALI

MAUL

Original foot on a scale

^{35 / 46}

Optimization Proc

ization Process

- 1. Motivation
- 2. Fundamentals
- 3. Capturing Data
- 4. Optimization Process
- 5. Results

6. Conclusion

Outline (cont.)

	· · · · · · · · · · · · · · · · · · ·			
			Conclusion	
7 Nevt S				

nization Process

Conclusion

Next

References

Was it worth it?

- Optimized part is lighter
- ▶ Can be printed in approx. 6 hours
- Doesn't break
- Looks less boring

Outline (cont.)

Next Steps

Notivation				

entals C

ı Optimiza

ization Process

Conclusion

on Next Steps

References

What next?

- Stress test parts
- Printing a part that finally breaks
- Has walking improved?

Thank You

Automation, ATI Industrial (2016). Six-Axis Force/Torque Sensor System - Installation and Operation Manual. Date accessed: 18.12.2017. URL: https://www.atiia.com/app content/documents/9620-05-Transducer%20Section.pdf. Berman, Barry (2012). "3-D printing: The new industrial revolution". In: Business horizons 55.2, pp. 155–162.

- Bestmann, Marc, Bente Reichardt, and Florens Wasserfall (2015). "Hambot: an open source robot for RoboCup Soccer". In: Robot Soccer World Cup. Springer, pp. 339-346.
- Brackett, D, I Ashcroft, and R Hague (2011). "Topology optimization for additive manufacturing". In: Proceedings of the solid freeform fabrication symposium. Austin, TX, Vol. 1, S, pp. 348–362.
- Design Guide: Fused Deposition Modeling (n.d.). URL: https://cdn2.hubspot.net/ hubfs/340051/Design Guides/Xometry_DesignGuide_FDM.pdf.

References (cont.)

Finnes, Tyler (2015). "High definition 3d printing-comparing sla and fdm printing technologies". In: The Journal of Undergraduate Research 13.1, p. 3. Hull, Charles W. (1984). US4575330A - Apparatus for production of three-dimensional

objects by stereolithography. URL:

https://patents.google.com/patent/US4575330A/en.

- Koenig, Nathan and Andrew Howard (2004). "Design and use paradigms for gazebo, an open-source multi-robot simulator". In: Intelligent Robots and Systems, 2004. (IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference on. Vol. 3. IEEE, pp. 2149-2154.
- Palermo, Elizabeth (2013). "Fused deposition modeling: most common 3d printing method". In: LiveScience, Purch 19.
- Ravi, B (2005). Metal casting: computer-aided design and analysis. PHI Learning Pvt. I td.

References (cont.)

ROBOTIS (2009). MX-106T / MX-106R eManual. URL: http:

//support.robotis.com/en/product/actuator/dynamixel/mx_series/mx-106.htm.

Sardain, Philippe and Guy Bessonnet (2004). "Forces acting on a biped robot. Center of pressure-zero moment point". In: *IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans* 34.5, pp. 630–637.

Sigmund, Ole and Kurt Maute (2013). "Topology optimization approaches". In:

Structural and Multidisciplinary Optimization 48.6, pp. 1031–1055.

TAMS (2017). Design of a 3D-printed Humanoid Robot. Date accessed: 22.12.2017. URL: https://tams.informatik.uni-

hamburg.de/theses/index.php?content=TopologyOptimizedRobot.

Torries, Brian, Saber DorMohammadi, Frank Abdi, Scott Thompson, and Nima Shamsaei (2017). "TOPOLOGY OPTIMIZATION OF AN ADDITIVELY MANUFACTURED BEAM". In:

Wang, Weiming, Tuanfeng Y Wang, Zhouwang Yang, Ligang Liu, Xin Tong, Weihua Tong, Jiansong Deng, Falai Chen, and Xiuping Liu (2013). "Cost-effective printing of 3D objects with skin-frame structures". In: ACM Transactions on Graphics (TOG) 32.6, p. 177.

- Wang, Xiaojian, Shanqing Xu, Shiwei Zhou, Wei Xu, Martin Leary, Peter Choong, M Qian, Milan Brandt, and Yi Min Xie (2016). "Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review". In: *Biomaterials* 83, pp. 127–141.
- WASSERFALL, F, N HENDRICH, F FIEDLER, and J ZHANG (2017). "3D-PRINTED LOW-COST MODULAR FORCE SENSORS". In:
- Zegard, Tomás and Glaucio H Paulino (2016). "Bridging topology optimization and additive manufacturing". In: *Structural and Multidisciplinary Optimization* 53.1, pp. 175–192.