Introduction	Histogram Comparison	Feature Based Recognition	Segmentation	CNN
0000	000000		0	0000000

Object Recognition

Lennart Waltke

University of Hamburg

17th May 2018

Introduction 0000	Histogram Comparison	Feature Based Recognition	Segmentation O	CNN 0000000

Outline

- 2 Histogram Comparison
- ③ Feature Based Recognition
- 4 Segmentation

Introduction ●000	Histogram Comparison	Feature Based Recognition	Segmentation 0	CNN 0000000
Motivation				

Motivation

Why use Object Recognition?

Lennart Waltke

University of Hamburg

Object Recognition

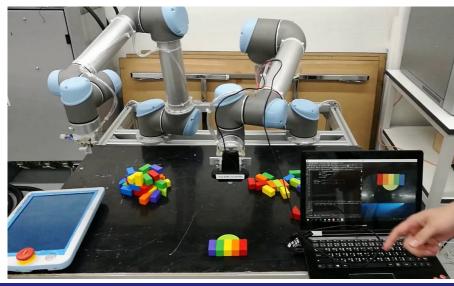
ntroduction ⊃●00	Histogram Comparison 000000	Feature Based Recognition	Segmentation 0	CNN 0000000
Motivation				

Lennart Waltke Object Recognition

In O

University of Hamburg

Courtesy of Cityscopes dataset


Introduction	Histogram Comparison	Feature Based Recognition	Segmentation	CNN
00●0	000000		0	0000000
Motivation				

Lennart Waltke

Object Recognition

Introduction	Histogram Comparison	Feature Based Recognition	Segmentation	CNN
000●	000000		0	0000000
Motivation				

Lennart Waltke Object Recognition University of Hamburg

Introduction 0000	Histogram Comparison ●00000	Feature Based Recognition	Segmentation 0	CNN 0000000
Histogram				

Histogram

- graphical representation of distribution of values
- intervals of histogram called bins
- Examples: gray value histogram, color histogram

Introduction 0000	Histogram Comparison ○●○○○○	Feature Based Recognition	Segmentation 0	CNN 0000000
Histogram				

Gray Value Histogram

• intensity values for each bin

Introduction 0000	Histogram Comparison 00●000	Feature Based Recognition	Segmentation O	CNN 0000000
Histogram				

Color Histogram

• histogram for each color channel of the picture

Introduction	Histogram Comparison	Feature Based Recognition	Segmentation	CNN
0000	000●00		O	0000000
Histogram				

Histogram Comparison

How similar are histograms?

Lennart Waltke

Object Recognition

Introduction 0000	Histogram Comparison 0000●0	Feature Based Recognition	Segmentation O	CNN 0000000
Histogram				
L _x -Dista	ance			

- All cells are weighted equally
- Not very robust to outliers
- Popular: Manhattan-Distance L_1 and Euclidian-Distance L_2

	Histogram Comparison	Feature Based Recognition	CNN
	000000		
Histogram			

Appearance Based Recognition

- Objects can be represented as set of images
- For recognition it is sufficient to compute 2D-appearances
- No 3D-model needed

Idea

Represent each object (view) by global descriptor and match descriptors for recognition.

Introduction	Histogram Comparison	Feature Based Recognition	Segmentation	CNN
0000		●0000000	0	0000000
Features				

Features

- Properties of image/image region
- Divided into
 - global features
 - local features
- Feature information stored in descriptors
- Feature detection types
 - edge detection
 - corner detection
 - blob detection

Introduction Histogram Comparison Feature Based Recognition Segmentation CNN 0000 0000000 0000000000000000000000	

Lennart Waltke Object Recognition University of Hamburg

Introduction 0000 Features	Histogram Comparison 000000	Feature Based Recognition 00●00000	Segmentation O	CNN 0000000
SIFT				

- Scale Invariant Feature Transform
- Combines detector and descriptor
- Very robust to viewpoint and illumination changes
- Can run in real time

Introduction 0000	Histogram Comparison 000000	Feature Based Recognition	Segmentation O	CNN 0000000
Features				
<u></u>	-			

SIFT - Phases

- Keypoint detection
- 2 Remove unstable keypoints
- Assign orientation
- Oetermine descriptor

Introduction	Histogram Comparison	Feature Based Recognition	Segmentation	CNN
0000	000000		0	0000000
Eastures				

SIFT - Keypoint Detection

- Use a image pyramid with Difference-of-Gaussian filters
- Several images per octave, each smoothed with different kernel size
- Find stable keypoints
 - compare each pixel with it's 26 neighbors
 - minima and maxima are keypoints

Introduction	Histogram Comparison	Feature Based Recognition	Segmentation	CNN
0000	000000		0	0000000
Features				

SIFT - Remove Unstable Keypoints

- Remove keypoints with low contrast
- Remove keypoints on edges

Introduction	Histogram Comparison	Feature Based Recognition	Segmentation	CNN
0000	000000	000000●0	O	0000000
Features				

SIFT - Assign Orientation

- \bullet Compute magnitude m and Orientation Θ for k sample points
- Weight by magnitude and Gaussian Window
- Create orientation histogram
 - strongest bin is orientation of keypoint

Introduction	Histogram Comparison	Feature Based Recognition	Segmentation	CNN
0000	000000	0000000●	O	0000000
Features				

SIFT - Determine Descriptor

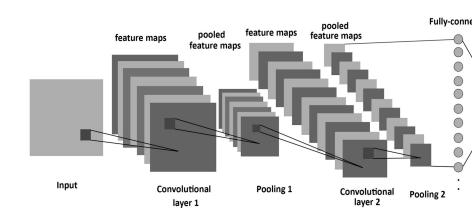
- Divide patch into 4-by-4 subpatches
- Weight gradients by gaussian centered at keypoint
- Compute histogram of gradient orientation with 8 bins for subpatches
- Descriptor: 4 * 4 * 8 = 128*Dimensions*

Introduction 0000	Histogram Comparison 000000	Feature Based Recognition	Segmentation •	CNN 0000000
Segmentation				

Segmentation

- Divides image into regions
 - easier and faster to analyze
- Problems
 - Undersegmentation
 - Oversegmentation

Introduction	Histogram Comparison	Feature Based Recognition	Segmentation	CNN
0000	000000		0	●000000
CNN				


- Neural network for images as Input
- Properties:
 - operate directly on image data
 - are locally connected
 - input are not vectors but 2D-matrices or 3D-volumes

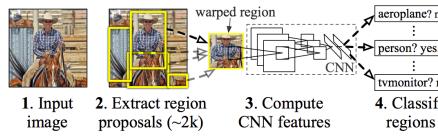
Introduction	Histogram Comparison	Feature Based Recognition	Segmentation	CNN
0000	000000		O	○●○○○○○
CNN				

CNN - Layer Types

- Convolutional Layer
- Activation Function Layer
- Pooling Layer
- Fully Connected Layer to compute class scores

Introduction 0000 CNN	Histogram Comparison 000000	Feature Based Recognition 00000000	Segmentation O	CNN 00●0000
CNN				

Introduction 0000	Histogram Comparison	Feature Based Recognition	Segmentation O	CNN 000●000
CNN				



- Regions with CNNs
- Output: Image with bounding boxes and classifications
- Adds region proposal
- Modification towards Real-Time: Faster R-CNN
- Modification of Faster R-CNN: Mask R-CNN

Introduction 0000	Histogram Comparison 000000	Feature Based Recognition	Segmentation 0	CNN 0000●00
CNN				

R-CNN: Regions with CNN features

Lennart Waltke

Introduction 0000	Histogram Comparison	Feature Based Recognition	Segmentation 0	CNN 00000●0
CNN				

R-CNN Output

University of Hamburg

Introduction 0000	Histogram Comparison	Feature Based Recognition	Segmentation 0	CNN 000000●
CNN				

Qeustions

Lennart Waltke

Object Recognition

University of Hamburg