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Navigation
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I Localization and Path planning are competences needed for
navigation

I Mobile robot navigations goals:
I Reach goal destination.
I Avoid obstacles in the way.

"navigation encompasses the ability of the robot to act based on
its knowledge and sensor values so as to reach its goal positions as
efficiently and as reliably as possible"[1]
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Localization
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The question localization is trying to answer: Where am I ?

Figure 1: Where am I?[1]

I Robot must determine its position w.r.t a map of the
environment.

I We want to do that accurately.
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Localization taxonomy
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The localization problem can be divided into three types:[2]

I Relative localization

I Absolute localization

I Kidnapped robot problem

Another characterisation of localization is the type of environment:

I Static

I Dynamic
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Path planning
Introduction Basic Concepts Localization Techniques Path Planning Techniques Conclusion Bibliography

Figure 2: Map-based architecture navigation[1]

I Robot has map and its location in it.

I Need to find a collision-free trajectory to reach the goal
location.

M. Innocentini – Localization and Path Planning 6 / 35



Motivation
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There are other possible approaches, however they have
limitations:[1]

I Behaviour based approach
I Not flexible
I Too many assumptions

I Dead reckoning
I Sensors / Effectors noise
I Information is not enough

I GPS
I Expensive
I Accuracy
I Coverage
I Other objetcs
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State estimation
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"Probabilistic robotics is the idea of estimating state from sensor
data"[2]

I We won’t know exactly every detail from the sensors:

I Noise
I Partial information

I A state is defined as the collection of all aspects about a
robot and the environment which can affect the future.[6]

I Robot pose / speed
I Walls
I Obstacles
I People
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Bayes rule
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Applying Bayesian statistics and probability distributions to
estimate the robot state.[2]

Bayes rule:
p(x |y) = p(y |x)p(x)

p(y)

I p(x) = Prior probability distribution

I p(y) = Data

I p(x |y) = Posterior probability distribution
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Bayes filter
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Let’s introduce some terminology:
I belief = Possible state
I xt = State
I zt = Measurement data coming from environment
I ut = Control data eg. Odometers data

1. Algorithm Bayes Filter(bel(xt−1), ut , zt):
2. for all x do:

bel(xt) =
∫

p(xt |ut , xt−1)bel(xt−1)dx
bel(xt) = p(zt |xt)bel(xt)

3. endfor
4. return bel(xt)
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Bayes filter cont.
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The Bayes filter is recursive and divided into two steps:[2]

I Prediction step:

bel(xt) =
∫

p(xt |ut−1)bel(xt−1)dx

I Measurement update:

bel(xt) = p(zt |xt)bel(xt)

A bel(x0) for t = 0 is needed, ideally useful prior knowledge.
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Map representation
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Map representation is another pillar in mobile robots navigation.

Close connection between:[1]

I Map precision → Goal precision
I Map precision → Sensors precision
I Map complexity → Reasoning computational complexity

I Maps have a large impact on both localization and path
planning.

I Robot operation context crucial for map representation
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Map representation types
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Possible representations:

I Continuos representation
I 2D representation
I Line extraction

I Decomposed representation
I Cell decompisition
I Occupancy grid map

Continuous representation is more "faithful" but harder to reason
with.

Abstract representation may lack feature but decrease complexity
of reasoning.
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Markov localization
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I Probabilistic localization algorithms are all variants of the
Bayes filter.

I Markov Localization:[2]
I Solve all three localization problems in static environments.
I Need a map.
I Estimate each possible robot position.

1. Algorithm Markov Localization(bel(xt−1), ut , zt ,m):
2. for all x do:

bel(xt) =
∫

p(xt |ut , xt−1,m)bel(xt−1)dx
bel(xt) = p(zt |xt ,m)bel(xt)

3. endfor
4. return bel(xt)
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Markov Localization Example
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Initial uniform distribution,
robot could be anywhere.

The robots uses its sensor to
recognize it’s next to a door.

Figure 3: Hallway example[2]
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Markov Localization Example
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The robot keeps moving and
integrate the motion to its
belief.

Again the correction step is
executed with the data from
the sensors.

Figure 4: Hallway example continued[2]
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Kalman Filter
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Markov Localization is useful but:
I Computationally heavy.
I Markov assumption.

I Often Markov Localization is inefficient and not really
applicable.

I More efficient solution: Kalman filter for localization purposes.

I Localization as a sensor fusion problem.
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Extended Kalman Filter
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I The general Kalman filter is not applicable: linear state
transition / measurement assumption

I The belief calculated is only an approximation of the true belief.

I EKF Localization is a special case of Markov Localization.

Figure 5: EKF Localization using a landmark feature map[2]
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Particle Filter
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I Non parametric implementation of Bayes filter.

I Estimate subset of possible position.

I Distribution represented by random samples (Particles).

I Easy to implement

I Most versatile, still few issues:
I Number of particles
I Random resampling error
I Hard to match proposed - target distribution
I Particle deprivation problem
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SLAM
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Simultaneous Localization and Mapping

I No access to map.

I No access to own pose.

I More complex then previous problem.

I Both continuous and discrete components.

I Two problems type:[2]
1. online SLAM
2. full SLAM
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EKF Case Study Introduction
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Figure 6: Kalman filter localization model[1]
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EKF Case Study Methodology
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I Comparing odometry based localization vs EKF localization.

I Robot moving in circle in a squared map.

1. Feature Extraction
I Feature map representation

2. Motion model
I Odometry model

3. EKF Application

Figure 7: Experimental Environment model[4]
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EKF Case Study Result
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I After running the
experiment the EKF showed
to be more reliable.

I Euclidean distance used as
accuracy reference.

DEOGi =
√

(xo,i − xg,i )2 + (yo,i − yg,i )2

DEEGi =
√

(xe,i − xg,i )2 + (ye,i − yg,i )2

Figure 8: Experiment result data[4]
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Path Planning Techniques
Introduction Basic Concepts Localization Techniques Path Planning Techniques Conclusion Bibliography

I Strong connection with motion control.
I Problem simplified due to less degrees of freedom.
I Configuration space is greatly reduced.

P =

x
y
θ



Common assumptions made during execution:[3]

1. A map is provided.
2. Robot know its location in the map.
3. Obstacle avoidance competence.
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Graph Theory Algorithms
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I Environment model has to match chosen search algorithm
requirements.

I Decompose the environment into a graph.

I With a graph planning is reduced to shortest path problem.

Common shortest path search algorithm:
I Dijkstra
I A*
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Dijkstra
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I Dijkstra one of the oldest searching algorithm.
I Developed around 1956
I Dijkistra is complete, always consider node with lowest cost.
I Obviously highly inefficient in large spaces.

Figure 9: Short sequence of Dijkstra applied1

1https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm
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A*
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I An improved version of Dijkstra is called A*.
I Developed around 1986, applied on Shakey.
I User prior knowledge to improve performance.
I Eg. estimating the distance between a node and the goal node.

Figure 10: Short sequence of A* applied2

2https://en.wikipedia.org/wiki/A*_search_algorithm
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Sampling-based Path Planning
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I Both Dijkstra and A* are inefficient in large search space.

I A possible solution →Sampling-based algorithm.

I Sampling-based path planners are probabilistic complete
I Rapidly-exploring Random Trees (RRT)
I Probabilistic Road Map (PRM)

I As time goes to infinity, the probability to find a path tends to
1.
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Rapidly-exploring Random Trees - RRT
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I Grow a single tree from the robot starting position until one of
the branches reaches the goal.

I Basic algorithm steps:[3]
1. Tree=Init(X,start);
2. WHILE ElapsedTime() < t AND NoGoalFound(G) DO

newpoint = StateToExpandFrom(Tree);
newsegment = CreatePathToTree(newpoint);
IF ChooseToAdd(newsegment) THEN

Tree=Insert(Tree,newsegment);
ENDIF

3. ENDWHILE
4. return Tree
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Rapidly-exploring Random Trees - RRT
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Figure 11: RRT application in 2D search space[3]
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Extendend RRT Case Study Methodology
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I RRT applications in real-time navigation scenario.
I Improvements:[5]

I KD-Tree to speed up nearest neighbour lookup
I Better encoding for tree’s points
I Using old iteration to aid new ones: Waypoint cache

Figure 12: ERRT simulation[5]
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ERRT Case Study Results
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Results of experiment:[5]

I Tested on RoboCup small size.
I Initial results:

ERRT Reactive
0.8m/s 1.2m/s.

I Improved replanning by using a straight path when possible.

I With improvements:

ERRT Reactive
1.7m/s 1.2m/s.
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RRT Considerations
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I Basic RRT is a good solution for path planning.

I It can be applied for real-time scenarios.

I The basic approach has few downsides:

I Unnecessary motion
I Single-query
I Not optimal solution

I However there are already different improved approcahes
ERRT, RRT*, Particle RRT.
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Conclusion
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I We have seen what navigation entitles.
I Localization is a crucial aspect of navigation.
I There is not certain robot’s position but we can estimate it.
I Robot view of the world is correlated to the path-planning

algorithm.
I Complete search algorithm are easy to implement but

inefficient in most cases.
I There is not one true best path-algorithm.

In conclusion both localization and path-planning are
crucial aspects in order to build a true autonomous
robot.
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