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Introduction to Reinforcement Learning

What is Reinforcement Learning?

 An agent explores an environment and receives feedback
in form of rewards

 The agent tries to learn a optimal policy
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Introduction to Reinforcement Learning

Terms of Reinforcement Learning:

 A state(s) determines a possible state of the environment 

 An action(a) determines a possible action that changes the 
state of the environment

 A reward(R) determines what reward is given for certain 
states or state action combinations

 A policy( ) determines which action is taken in the actual 
state
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Introduction to Reinforcement Learning

Why is Reinforcement Learning used in robotics?

 a robot can autonomously learn an optimal behavior

 Instead of describing the solution in detail, only rewards have 
to be given for reaching goals

 Policies are learned not concrete action sequences
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Introduction to Reinforcement Learning

Challenges of Reinforcement Learning used in robotics:

 States and actions of the robots are continuous

 Complex and dynamic physical systems

 Behaviors learned in a simulator can’t be transferred directly 
to the real robot 

 Good reward functions are needed for the learning process
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Model-based vs Model-free approaches

Model-based:

 The agent creates a model of the environment

 A transition function(T) is generated which takes a state and 
an action and then predicts the following state

 T(s,a) = s’

 Once the environment is modelled the policy can be found 
using a planning algorithm
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Model-based vs Model-free approaches

Model-free:

 A model is not needed to find a good policy

 Q-Learning and Actor-Critic methods evaluate actions to 
determine the best action in a given state

 No model of the environment is created
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Q-Learning

 Neural Network is used to estimate Q-Values 

 Q-Values map a state of the environment to a numerical 
value for each possible action in this state

 Q-Values indicate which action is expected to result in the 
highest future reward

 Q-Values are used to decide which action should be 
performed in the actual state
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Q-Learning

Learning procedure:

 At the start the Q-Values are 0 

 The agent starts randomly exploring the environment and 
gets rewards

 After some exploration the Q-Values get updated with an 
update function
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Q-Learning

Q-Value update function:

max

 : Q-Value for action a in state s a at time t

 : Reward at time t

 : discount factor

 max : Maximal Q-Value in the state s at time t+1 for
any possible action a
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Q-Learning

Q-Value update function:
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Q-Learning

Learning procedure:

 At the start the Q-Values are 0 

 The agent starts randomly exploring the environment and 
gets rewards

 After some exploration the Q-Values get updated with an 
update function

 The Network gets trained to output the updated Q-Values 
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Actor-Critic-Learning

 Uses two Neural Networks

 The Actor Neural Network selects the action for the actual 
state 

 The Critic Neural Network evaluates the action taken in a 
state
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Actor-Critic-Learning

Training of Actor and Critic:

 The Critic is updated so the predicted values correspond to 
the experienced values

 The Actor is updated using the evaluation of the Critic

 To determine good and bad actions a baseline can be used
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Actor-Critic-Learning
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Collective Learning

 Experiences of robots can be shared with each other

 Using multiple robots decreases the time needed for learning

 Small changes between tasks of the different robots increase 
adaptability

 Consists of local worker and global worker
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Collective Learning

Learning procedure:

 Pretraining of convolution layers 

 Teacher demonstrates the task

 Local Worker generates sample trajectories
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Collective Learning

Learning procedure:

 Samples are used to optimize the local policy 

 Optimized trajectories are appended to a global memory

 Global Worker uses the optimized trajectories to train its 
Neural Network
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Trends

 Using Deep Reinforcement learning to solve more complex 
tasks

 Train the desired behavior on the actual hardware and not in 
a simulator

 Use imitation learning on actual hardware to learn tasks
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The End

Thank you for your attention.

Any questions?
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