

Multimodal Machine Learning

Michael Eisele 7089760

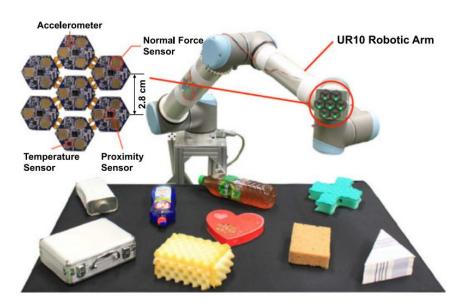
Definition

Modality

A particular way of doing or experiencing something. It refers to a certain type of information and/or the representation format in which information is stored. [1]

Motivation

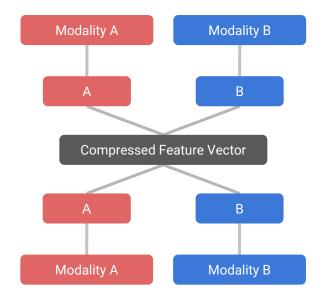
- Similar to how humans perceive their environment
- Some information is difficult to acquire unimodally
- Increased robustness


Examples of MMML applications

- Natural language processing/ Text-to-speech
- Image tagging or captioning [3]
- SoundNet recognizing objects from sound [4]

Robot learning to grasp objects, Kaboli et al [2]

- Starts estimating object positions in a grid
- Pressing, sliding, static contact to explore physical properties
- Tries to minimize training for unknown objects

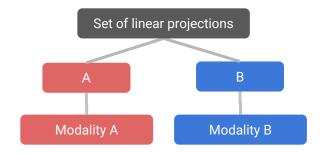

Technical Challenges for MMML [5]

- Representation
- Fusion
- Alignment
- (Translation)
- (Co-Learning)

Representation

Joint representations

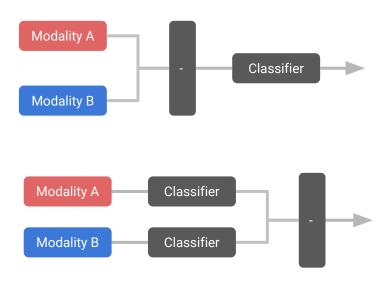
- 1. Multimodal Tensor Fusion Network
- 2. Deep Multimodal autoencoders
- 3. Deep Multimodal Boltzmann machines



Representation

Coordinated representations

- 1. Multimodal Vector Space Arithmetic
- 2. Deep Canonical Correlation Analysis
- 3. Deep Canonically Correlated Autoencoders

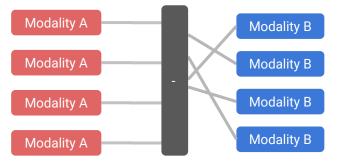

Fusion

Model-Agnostic Approaches

- 1. Early Fusion
- 2. Late Fusion
- 3. Hybrid Fusion

Model-Based Approaches

- 1. Multiple Kernel Learning
- 2. Deep Neural Network


Alignment

Explicit Alignment

Goal is to find correspondences between elements

Implicit Alignment

Goal is to solve a given problem

The McGurk Effect

The McGurk Effect in MMML

Audio / Visual Setting	Model prediction		
	/ga/	/ba/	/da/
Visual /ga/, Audio /ga/	82.6%	2.2%	15.2%
Visual /ba/, Audio /ba/	4.4%	89.1%	6.5%
Visual /ga/, Audio /ba/	28.3%	13.0%	58.7%

Sources

Multimodal Machine Learning: A Survey and Taxonomy https://arxiv.org/pdf/1705.09406.pdf

Multimodal Deep Learning for Robust RGB-D Object Recognition https://arxiv.org/pdf/1507.06821.pdf

Multimodal Integration Learning of Object Manipulation Behaviors using Deep Neural Networks https://pdfs.semanticscholar.org/d477/5ba945e93d9ac09fc606ef566fca7c8524e4.pdf

Robot gains Social Intelligence through Multimodal Deep Reinforcement Learning https://arxiv.org/pdf/1702.07492.pdf

Tutorial on Multimodal Machine Learning https://www.microsoft.com/en-us/research/wp-content/uploads/2017/07/Integrative Al Louis Philippe Morency.pdf

Sources

Cambridge Dictionary https://dictionary.cambridge.org/de/worterbuch/englisch/modality

A Tactile-Based Framework for Active Object Learning and Discrimination using Multimodal Robotic Skin https://arxiv.org/pdf/1301.3592.pdf

Deep Learning for Detecting Robotic Grasps https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7961193

Tensor Fusion Network for Multimodal Sentiment Analysis https://www.aclweb.org/anthology/D17-1115

Feedback & Questions