Introduction Configuration Space Cell Decomposition Potential Field Method 00 0 0000 000000	od Sources o

Motion Planning

Jonas Tietz

May 3, 2018

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

3

Introduction 00	Configuration Space	Cell Decomposition	Potential Field Method	Sources O

Introduction

Configuration Space

Cell Decomposition

Potential Field Method

Sources

- ▲日を ▲国を ▲国を ▲国を ▲日を

Introduction	Configuration Space	Cell Decomposition	Potential Field Method	Sources
•0	0	0000	000000	0

Introduction

Problem input:

- World description
- Robot description
- Starting configuration
- Target configuration

Output: Collision free trajectory of the manipulator

Introduction O•	Configuration Space	Cell Decomposition	Potential Field Method	Sources O

A B F A B F

Restrictions

- Not dynamic (no moving objects)
- Single robot manipulator
- Only rotational joints

Introduction	Configuration Space	Cell Decomposition	Potential Field Method	Sources O

Configuration Space

- Space of all possible configuration of the robot
- for each degree of freedom k one dimension $\rightarrow \mathbb{R}^k$
- every configuration of the manipulator is one point in the configuration space

Figure: Robot Motion Planning - Jean-Claude Latombe page 387

Introduction	Configuration Space	Cell Decomposition	Potential Field Method	Sources O

Cell Decomposition

The goal is to find a representation of all the collision free space in the configuration space. Then a simple path finding algorithm can be used to find trajectory of the manipulator.

Figure: Robot Motion Planning - Jean-Claude Latombe page 394

Configuration Space 0	Cell Decomposition	Potential Field Method	Sources 0
	Configuration Space O	Configuration Space Cell Decomposition o o o	Configuration Space Cell Decomposition Potential Field Method ○

Cell Decomposition

For this algorithm a tree structure is used to represent this free space.

- 1. Start with the first joint
- 2. Check at a given resolution all angles for collision
- 3. Add all collision-free cells to the tree
- 4. Repeat for all new nodes with the next joint

In an static environment this data structure can be precomputed.

Introduction	Configuration Space	Cell Decomposition	Potential Field Method	Sources
00	0	0000	000000	0

Path finding in the tree

From this tree a connectivity graph can be constructed, which in turn can be used in a simple path finding algorithm like A^* .

Configuration Space	Cell Decomposition	Potential Field Method	Sources O
	Configuration Space O	Configuration Space Cell Decomposition	Configuration Space Cell Decomposition Potential Field Method

Questions?

・ロト ・四ト ・ヨト ・ヨト ・日 ・ つへぐ

Introduction 00	Configuration Space	Cell Decomposition	Potential Field Method	Sources O
	-			-

Potential Field Method

Idea:

- Configuration is a "particle" in the configuration space
- Obstacles emit a repulsive force
- The target emits a attractive force

Introduction	Configuration Space	Cell Decomposition	Potential Field Method ○●○○○○	Sources O

Potential Field Method

- The potential field can be easily imagined when dealing with only 2 dimensions
- The repulsive forces are hills in the field
- The attractive forces are valleys
- The algorithm tries to find a path which follows the downward gradient

Introduction 00	Configuration Space	Cell Decomposition	Potential Field Method	Sources O

Potential Field Method

- may get stuck in local minima
- does not necessarily find a trajectory if there is one
- faster than more exact methods

Introduction 00	Configuration Space	Cell Decomposition	Potential Field Method 000●00	Sources O

Best First Planning

- to deal with local minima, we need to enhance the algorithm
- one option is do discretize the C-Space into a grid
- use an Path-Finding algorithm, which walks the graph in direction of the gradient until it reaches a minimum
- if it is not the target configuration, backtrack
- if the whole graph is explored an the target is not reached, return false

Introduction 00	Configuration Space	Cell Decomposition	Potential Field Method 0000●0	Sources O

Randomization Techniques

- Instead of exhaustively searching the graph, randomization strategies to escape local minima can lead to better performance
- Path searching along the gradient
- if in local minimum, move along a random direction and start searching again.
- repeat this k times or until another minimum is found.
- ▶ if after k times no other minimum is found, backtrack
- the movement along a random direction needs to be checked for collision

Introduction 00	Configuration Space	Cell Decomposition	Potential Field Method 00000●	Sources

Questions?

▲□▶▲□▶▲≣▶▲≣▶ ≣ のQ@

Introduction Configuration Space Cell Decomposition 00 0 0000	Potential Field Method So	urces

Sources

- Robot Motion Planning Jean-Claude Latombe
- A Simple Motion Planning Algorithm For General Robot Manipulators - Tomás Lozano-Pérez
- Strategies For Solving Collision-free Trajectory Problems For Mobile And Manipulator Robots - Laurent Gouzènes
- Path Planning Using Potential Fields For Highly Redundant Manipulators - Erdinc Sahin Conkur