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Introduction
● Learning motion on articulated bodies is a task which aims to 

robustly generate or reproduce valid and efficient movements.



Introduction
● Typical applications in robotics 

and animation include 
locomotion, manipulation, 
interaction, ...

→ Geometry of the body (serial     
      chain, biped, quadruped)
→ Adapting to environments
→ Control signals produce motion



Related Work
● Data-driven motion synthesis based on PCA (Howe et. al. 1999, 

Safonova et. al. 2004) by projecting motion on a lower-
dimensional manifold (global vs. local PCA)

● Kernel-based approaches overcome limitations of linear-based 
methods using RBF (Radial Basis Functions) or GP (Gaussian 
Processes) 
→ Motion Blending (Mukai 2011, Grochow et. al. 2004)
→ Planning Movements (Levine et. al. 2012)

● Auto-regressive models such as conditional RBM (Taylor et. al. 
2009) and Encoder-Recurrent-Decoder using LSTM (Fragkiadaki et. 
al., 2015)
→ More scalable, but tend to drift from the original motion

● Deep Reinforcement Learning in the control space of physically-
based animation to handle high-dimensional state spaces (Peng 
et. al. 2016), but the system is only tested in 2D environments.



Approach



Approach
● Phase-Functioned Neural Network to learn predictions from one 

state i to i+1 while handling different styles of motion.



Approach
● Intuitvely, the phase is used to learn a function of weights rather than a 

single weight distribution in order to prevent false motion interpolations.



Approach



Approach
● Full Parametrisation: Trajectory {Positions, Directions}, Styles, Joint 

{Positions, Rotations, Velocities}, Environment Information
● Prediction from state i to i+1



Approach
● The phase can be expressed as the Catmull-Rom spline function 

theta given four control points (a1, a2, a3, a4), the network 
weights beta for an arbitrary cyclic phase p.



Approach
● The network is trained using the Adam optimiser, with respect to 

the following cost function:

where

→ X = input control parameters
→ Y = output parameters
→ P = phase parameters
→ beta = phase function parameters
→ drop-out rate of 0.7
→ Backpropagation using AdamWR (Loshchilov, Huttner 2017)

● 1 full training takes approximately 10-15 hours using NVIDIA 
GeForce GTX 980M using 10GB of processed motion data.



Discussion
● What is the crucial part?

→ Phase Labeling / Extraction (can be difficult)

→ Style Labeling / Extraction (is rather easy)

→ Amount of Data (not too hard)

→ Data Completeness (think before capture…)



Phase
● Biped Motion...

→ Phase encoding is straight forward for humans

→ Locomotion cycles can be extracted using foot contact patterns

→ We can capture loads of data and suitable for our tasks

→ Motion retargeting is rather easy even for varying geometries



Phase
● Quadruped Motion…

→ Phase encoding is very difficult since many gait patterns exist

 

→ Motion is much more noisy and foot contacts are often unsharp

→ Difficult to capture specific motions from real animals

→ Motion retargeting is more complex due to high-frequency
     components



Phase
● Quadruped Motion…

→ Phase can be extracted by optimising a  linearised trigonometric function 
to determine motion cycles within joint movements.

→ Positive !or! Negative turning points represent start/end of phase cycle

→ Fit the free variables for amplitude, phase, shift, offset, slope

● y = a * sin(b*x – c) + m*x + b
● Loss = RMSE(y_red – y, -y_green – y)
● Yellow Curve = Fitted cyclic function over frequency windows with t=1s



Phase
● Quadruped Motion…

● More complex...



Results
Demo Biped Locomotion



Results
Demo Quadruped Locomotion



Setup Sketch for Robot Manipulation
● Dexterous manipulation by learning motion from humans.

● Data can be generated either purely supervised or through imitation.



Setup Sketch for Robot Manipulation
● Perform motion capture using your favourite hardware or human-demonstration

(e.g. Perception Neuron is quite good for hand motion recording)
● Make sure to record a variety of motion trajectories which can later be controlled 

by user input control signals
● If desired, also record motions which avoid obstacles
● Save joint positions, rotations, velocities relative to the root, and store environment 

geometry (e.g. use a CNN-Octree representation as in Wang et. al. 2017)



Setup Sketch for Robot Manipulation
● Export motion as .bvh and perform phase and style labeling, either 

(semi)-automatically scripted or using the developed tools in Unity3D 



Setup Sketch for Robot Manipulation
● Export labelled motion sequences as state feature vectors in a data file, 

and use the PFNN tensorflow code for training



Setup Sketch for Robot Manipulation

Wait ~24 hours training, e.g. using your favourite coffee...Wait ~24 hours training, e.g. using your favourite coffee...



Setup Sketch for Robot Manipulation

● Import saved binary files from tensorflow which represent the 
precomputed control points and weights for the PFNN

● Provide a suitable input to the network, including the past and 
estimated future trajectory states (do not need to be accurate) 
as well as the robot/environment state (needs to be accurate)

● Update and correct the estimated states using the PFNN 
output (improves accuracy of successive predictions)

● Keep predicting all trajectory states until the goal is reached

● Start manipulating...



Conclusion
● Phase-Functioned Neural Network as a novel method for motion 

learning in animation and robotics

● Can handle high-dimensional motion with different style types and 
including environment information for creating realistic motion in 
real-time

● Current state-of-the-art for humanoid character animation

● First successful tests also on quadruped geometries

● Promising to be applicable for dexterous robot manipulation



Implementations
● Phase-Functioned Neural Network Visualisation and

Motion Capture Labeling Editor of .bvh files in Unity3D

● General data-preprocessing production pipeline which can be 
used for different geometries (bipeds, quadrupeds, robots, ...)
https://github.com/sebastianstarke/AI4Animation
(IP, Code and Data belongs to the UoE, and is only available for non-commerical use)

● Phase-Functioned Neural Network in Tensorflow
(including variations for transfer and multi-task learning)
https://github.com/ShikamaruZhang
(IP, Code and Data belongs to the UoE, and is only available for non-commerical use)

https://github.com/sebastianstarke/AI4Animation
https://github.com/ShikamaruZhang
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