
Phase-Functioned Neural
Networks for Motion Learning

TAMS
University of Hamburg

03.01.2018

Sebastian Starke
University of Edinburgh
School of Informatics

Institue of Perception, Action and Behaviour
Sebastian.Starke@ed.ac.uk

Introduction
● Learning motion on articulated bodies is a task which aims to

robustly generate or reproduce valid and efficient movements.

Introduction
● Typical applications in robotics

and animation include
locomotion, manipulation,
interaction, ...

→ Geometry of the body (serial
 chain, biped, quadruped)
→ Adapting to environments
→ Control signals produce motion

Related Work
● Data-driven motion synthesis based on PCA (Howe et. al. 1999,

Safonova et. al. 2004) by projecting motion on a lower-
dimensional manifold (global vs. local PCA)

● Kernel-based approaches overcome limitations of linear-based
methods using RBF (Radial Basis Functions) or GP (Gaussian
Processes)
→ Motion Blending (Mukai 2011, Grochow et. al. 2004)
→ Planning Movements (Levine et. al. 2012)

● Auto-regressive models such as conditional RBM (Taylor et. al.
2009) and Encoder-Recurrent-Decoder using LSTM (Fragkiadaki et.
al., 2015)
→ More scalable, but tend to drift from the original motion

● Deep Reinforcement Learning in the control space of physically-
based animation to handle high-dimensional state spaces (Peng
et. al. 2016), but the system is only tested in 2D environments.

Approach

Approach
● Phase-Functioned Neural Network to learn predictions from one

state i to i+1 while handling different styles of motion.

Approach
● Intuitvely, the phase is used to learn a function of weights rather than a

single weight distribution in order to prevent false motion interpolations.

Approach

Approach
● Full Parametrisation: Trajectory {Positions, Directions}, Styles, Joint

{Positions, Rotations, Velocities}, Environment Information
● Prediction from state i to i+1

Approach
● The phase can be expressed as the Catmull-Rom spline function

theta given four control points (a1, a2, a3, a4), the network
weights beta for an arbitrary cyclic phase p.

Approach
● The network is trained using the Adam optimiser, with respect to

the following cost function:

where

→ X = input control parameters
→ Y = output parameters
→ P = phase parameters
→ beta = phase function parameters
→ drop-out rate of 0.7
→ Backpropagation using AdamWR (Loshchilov, Huttner 2017)

● 1 full training takes approximately 10-15 hours using NVIDIA
GeForce GTX 980M using 10GB of processed motion data.

Discussion
● What is the crucial part?

→ Phase Labeling / Extraction (can be difficult)

→ Style Labeling / Extraction (is rather easy)

→ Amount of Data (not too hard)

→ Data Completeness (think before capture…)

Phase
● Biped Motion...

→ Phase encoding is straight forward for humans

→ Locomotion cycles can be extracted using foot contact patterns

→ We can capture loads of data and suitable for our tasks

→ Motion retargeting is rather easy even for varying geometries

Phase
● Quadruped Motion…

→ Phase encoding is very difficult since many gait patterns exist

→ Motion is much more noisy and foot contacts are often unsharp

→ Difficult to capture specific motions from real animals

→ Motion retargeting is more complex due to high-frequency
 components

Phase
● Quadruped Motion…

→ Phase can be extracted by optimising a linearised trigonometric function
to determine motion cycles within joint movements.

→ Positive !or! Negative turning points represent start/end of phase cycle

→ Fit the free variables for amplitude, phase, shift, offset, slope

● y = a * sin(b*x – c) + m*x + b
● Loss = RMSE(y_red – y, -y_green – y)
● Yellow Curve = Fitted cyclic function over frequency windows with t=1s

Phase
● Quadruped Motion…

● More complex...

Results
Demo Biped Locomotion

Results
Demo Quadruped Locomotion

Setup Sketch for Robot Manipulation
● Dexterous manipulation by learning motion from humans.

● Data can be generated either purely supervised or through imitation.

Setup Sketch for Robot Manipulation
● Perform motion capture using your favourite hardware or human-demonstration

(e.g. Perception Neuron is quite good for hand motion recording)
● Make sure to record a variety of motion trajectories which can later be controlled

by user input control signals
● If desired, also record motions which avoid obstacles
● Save joint positions, rotations, velocities relative to the root, and store environment

geometry (e.g. use a CNN-Octree representation as in Wang et. al. 2017)

Setup Sketch for Robot Manipulation
● Export motion as .bvh and perform phase and style labeling, either

(semi)-automatically scripted or using the developed tools in Unity3D

Setup Sketch for Robot Manipulation
● Export labelled motion sequences as state feature vectors in a data file,

and use the PFNN tensorflow code for training

Setup Sketch for Robot Manipulation

Wait ~24 hours training, e.g. using your favourite coffee...Wait ~24 hours training, e.g. using your favourite coffee...

Setup Sketch for Robot Manipulation

● Import saved binary files from tensorflow which represent the
precomputed control points and weights for the PFNN

● Provide a suitable input to the network, including the past and
estimated future trajectory states (do not need to be accurate)
as well as the robot/environment state (needs to be accurate)

● Update and correct the estimated states using the PFNN
output (improves accuracy of successive predictions)

● Keep predicting all trajectory states until the goal is reached

● Start manipulating...

Conclusion
● Phase-Functioned Neural Network as a novel method for motion

learning in animation and robotics

● Can handle high-dimensional motion with different style types and
including environment information for creating realistic motion in
real-time

● Current state-of-the-art for humanoid character animation

● First successful tests also on quadruped geometries

● Promising to be applicable for dexterous robot manipulation

Implementations
● Phase-Functioned Neural Network Visualisation and

Motion Capture Labeling Editor of .bvh files in Unity3D

● General data-preprocessing production pipeline which can be
used for different geometries (bipeds, quadrupeds, robots, ...)
https://github.com/sebastianstarke/AI4Animation
(IP, Code and Data belongs to the UoE, and is only available for non-commerical use)

● Phase-Functioned Neural Network in Tensorflow
(including variations for transfer and multi-task learning)
https://github.com/ShikamaruZhang
(IP, Code and Data belongs to the UoE, and is only available for non-commerical use)

https://github.com/sebastianstarke/AI4Animation
https://github.com/ShikamaruZhang

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

