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Motivation: Why use Monocular Vision
Introduction Details Experiments Conclusion Future Work Bibliography

In the paper Deep Learning from Nature: [LeCun et al., 2015]1

The future of deep learning: Unsupervised learning had a
catalytic effect in reviving interest in deep learning, we ex-
pect unsupervised learning to become far more important in
the longer term. Human and animal learning is largely unsu-
pervised: we discover the structure of the world by observing
it, not by being told the name of every object.

1https://www.nature.com/articles/nature14539
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Advantage
I Cheap
I Easy to get
I Flexible to complicated environments

Disadvantage
I Not as accuracy as depth sensor
I Need a lot of calculate power
I Need a lot of training
I Not stable in current time
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Related Work: Use Traditional Ways
Introduction Details Experiments Conclusion Future Work Bibliography

In the traditional way of doing obstacle avoidance task, one should
use the camera to detect the point flow to get the information
about the environment. For example,the position of the floor and
obstacles. Then we can use some fixed way to plan and executes.

I Use Depth camera to get Point Cloud
I Use the Point Cloud to fitting a function about the ground
I Calculate the distance between every point with the fitting

ground h
I If h is larger than a setting threshold, then marke it as an

obstacle
I Transfer the Point Cloud data of the obstacle to the robot

coordinate space
I Combine the current robot moving stats with the obstacle to

decide how to avoid the obstacles
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Related Work: Use CNN and transfer learning
Introduction Details Experiments Conclusion Future Work Bibliography

Transfer Learning with CNNs

1. Train on 
Imagenet

3. Medium dataset:
finetuning

more data = retrain more of 
the network (or all of it)

2. Small dataset:
feature extractor

Freeze these

Train this

Freeze these

Train this

tip: use only ~1/10th of 
the original learning rate 
in finetuning top layer, 
and ~1/100th on 
intermediate layers

2

Use transfer learning (Fine tune) is also a good way to improve the
training process.

2http://cs231n.stanford.edu/slides/2016/winter1516_lecture11.pdf
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Related Work: Using CNN and reinforcement learning
Introduction Details Experiments Conclusion Future Work Bibliography

[Xie et al., 2017] Towards Monocular Vision based Obstacle
Avoidance through Deep Reinforcement Learning. 3

Angular
Action

Advantage

Value

t

t-3

... Linear
Action

Q-Value

This paper uses CNN to get a "Depth Image stack", then uses
D3QN to get action.

3https://arxiv.org/abs/1706.09829
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Related Work: Using CNN and reinforcement learning
Introduction Details Experiments Conclusion Future Work Bibliography

Back-propagation

Training
data

ϴ

ϴ-

Update target network

Target
valueDiscount

factor

Training in
simulator

Prediction in
real world

Real
data

4

4https://arxiv.org/abs/1706.09829
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Pipeline:
I Collect data and labeling
I Build CNN to train
I Get the result in test set
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Try to use CNN: Structure of my CNN
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I Convolutional Networks

I Conv 1: filter 16, kernel
size 5, strides 1

I Conv 2: filter 32, kernel
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I Conv 3: filter 54, kernel
size 5, strides 1

I Fully connected Networks

I Flat 1: 100 nodes

I Flat 2: 50 nodes

I Flat 3: 2 nodes
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Try to use CNN: Results
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Use self supervised learning
Introduction Details Experiments Conclusion Future Work Bibliography

The basic idea of this is to let robot get labels by the additional
sensing such as range finder or collision detection switch. But this
way is highly relying on the labeling rules.

I Using depth sensor to get "ground truth"
I Using the bumper in front of the turtlebot
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Use Reinforcement Learning: What is RL
Introduction Details Experiments Conclusion Future Work Bibliography

observation

reward

action

At

Rt

Ot

5

At each step t the agent:
I Executes action At
I Receives observation Ot
I Receives scalar reward Rt

The environment:
I Receives action At
I Emits observation Ot+1
I Emits scalar reward Rt+1

5http://www0.cs.ucl.ac.uk/staff/D.Silver/web/Teaching.html
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Use Reinforcement Learning: Q-Learning
Introduction Details Experiments Conclusion Future Work Bibliography

The mission of RL is to find a best policy in order to make the
reward more.

The value function(Bellman Function) describes how to get the
value of current state, that is,

V (s) = E[Rt+1 + λv(St+1)|St = s]

To update the Q value, that is,

Q(St ,At)← Q(St ,At) + α(Rt+1 + λmax
a

Q(St+1, a)− Q(St ,At))
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Use Reinforcement Learning: DQN
Introduction Details Experiments Conclusion Future Work Bibliography

In the Q-Learning we give a Q table:

a1 a2 a3 a4
s1 Q(1,1) Q(1,2) Q(1,3) Q(1,4)
s2 Q(2,1) Q(2,2) Q(2,3) Q(2,4)
s3 Q(3,1) Q(3,2) Q(3,3) Q(3,4)
s4 Q(4,1) Q(4,2) Q(4,3) Q(4,4)

Due to store too many states in one Q table is unrealistic in DQN,
we get Q table from a network.
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def get_reward ( s e l f , a c t i o n ) :
i f s e l f . f l a g == ac t i o n :

i f a c t i o n == 0 :
reward = 1

e l s e :
reward = 0

e l s e :
reward = −1

return reward

Flag is whether the robot is crashed a bumper. In the future, we
need to add more actions.
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Experiment using CNN
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Experiment using DQN
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I Traditional way by using depth sensor to plan a robot is good
enough, but this kind of method is highly relied on expensive
sensor.

I By using CNN the Monocular camera can get very good result
in both training data and test data. But it will get bad result in
unknown environment.

I Self-supervised learning can reduce the backward of the pure
CNN, by self collecting data on the run.

I By using CNN to get a predict depth image then use this as
input to train the RL network is very interesting, and it avoid
the backward of using bad simulated camera in simulation
environment.

I Using DQN to train the network directly is more intelligence,
need to do Some furthermore researching on it.
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[Zhu et al., 2016] Target-driven Visual Navigation in Indoor Scenes
using Deep Reinforcement Learning 6
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6https://arxiv.org/pdf/1609.05143.pdf
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Thank you for your attention,
Suggestion, Questions and

Commands are highly welcome.
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