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Requirements of the implementation of semantic reach-to-grasp
tasks:

1 Detecting the preferred object on a table (Object dicovery or
detection)

2 Finding a feasible grasp configuration to grasp it.(Grasp
planning)

3 Generating a constraint-satisfied trajectory to reach it.
(Trajectory generation)

Motivations:
1 Grasping unkown objects (without mesh models) is difficults,
espically in a unstructure environment.

2 Generating a constraint-satisfied trajectory is important for
the reaching movement.

3 The implementation of semantic reach-to-grasp (RTG) task.
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Grasp planning aims to find a grasp configuration with highest
quality.

g∗ = argmax
g∈G

Q(I,g) (1)

where g is candidate grasp. I is the segmented image. Q(I,g) is
quality function.
Two key problems:

I How to define a quality function to evaluate the performance
of candidate grasps.

I How to search the optimal grasp in a large grasp space.
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Learning a quality function with Neural Network(NN).
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Details of the quality network:
I dataset: Dex-Net2.0 presented by Mahler et al [5].

samlpe = 〈image,grasp,quality〉.
I grasp representation: g = {x ,y ,z ,θ}
I learning params: 20 epochs, batch size=64, learning

rate=0.005(exponential decay), Stochastic Gradient Descent
(SGD) method with a momentum rate(0.9)
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Bayesian Optimization (BO) is a global optimization technique for
black-box function.

I A surrogate model: used to represent the distribution of the
quality function and representated by a Gaussian Process(GP).

qgp(g)∼ G P(m(g),k(g ,g ′)) (2)

I A acquisition function: used to find the optimal query
point(candidate grasp) and representated by the Upper
Confidence Bound (UCB) policy.

aUCB(gn+1|Dn
grasp) = µ(gn+1|Dn

grasp) + βσ
2(gn+1|Dn

grasp) (3)
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Bayesian-based search algorithm is used to find the optimal grasp.
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1 Sample an initial set of candidate grasps to form a dataset
Dgrasp

2 Fit the GP model with Dgrasp.
3 Search a local optimum:ĝ = argmaxg aUCB(g |Dgrasp).
4 Compute the quality:q̂ = Q(I, ĝ) and Dgrasp ← Dgrasp ∪ (ĝ , q̂)

5 Repeat 2-4, until a optimal grasp g∗
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Results:

(a)

(b)

Abbildung: A comparison of the
results from two different search
algorithms. a) The MC-based
search algorithm, b) the
Bayesian-based search algorithm.
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Abbildung: Examples of the
grasp planning.
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Trajectory generation based on optimal control.

J(Z t ,Ut) = min
Ut

t+H

∑
i=t

l(xi ,ui )

s.t. zi+1 = f (zi ,ui , fi ),∀i ∈ t, · · · , t + H
(4)

where l(xi ,ui ) is a user-defined cost function. The forward dynamic
model zi+1 = f (zi ,ui , fi ) governs the state transition given the
robot control ui and the state zi .
Two key problems:

I How to build a accuracy dyanmic model to predict the state
transition of the robot.

I How to adapt the reaching movement according to the
changing environment.
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1. Learning a forward dynamical model from human demonstrations

Mẍ(t) + Cẋ(t) + K (x −xg ) = ft + ut (5)

where u ∈ R3 is the virtual robot control input in the Cartesian
space and f ∈ R3 is the virtual human control that forces the
impedance model to match the human expectation.

f (x) =
∑

k
i=1ωiψi (x)

∑
k
i=1ψi (x)

(6)

2. Iteration Linear-Quadratic-Regulator (iLQR) method is used to
perform trajectory optimization.

p(ut |xt) = N (Kt(xt −x t) + kt + ut ,Σt) (7)
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Results:

(a)

(b)

Abbildung: Comparison of the
three different trajectory
generation methods.
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Abbildung: Comparison of two
different trajectory optimization
approaches.

1 reproduce human natural
movement.

2 Fast adaptability.
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(a) (b) (c)

Tabelle: The overall performance of the proposed unified learning
framework.

Component Accuracy

Object discovery 46/48
Robot grasping operation 39/48
Robot reaching movement 48/48
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I Object detection helps to improve the success of grasp
planning.

I Learning grasp quality from datasets (collected by human or
simulation).

I The Bayesian-based search algorithm is robust to the
uncertainty of object shape.

I The planned grasp may fail due to the slippage or the irregular
shape of the objects, like the bowl. It is preferred to employ
tactile sensors for grasp adaptation.

I Trajectory generation has a form of conventional impedance
control. It is preferred to learn the robot control and the
impedance parameters simultaneously.

I Multi-finger grasping will be more complex.
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Grasp planning is a optimization problem.

... but it is difficult to be solved. Most of the existing works focus
on data-driven method [1]:

I Heuristic-based
I Learning from human demonstration
I Learning from Labeled training data
I Reinforcement learning.
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Assumptions 1
One explanation for human efficiency in selecting appropriate grasp
assumes that human unconsciously simplifies the large search space
through learning and experience.

Our basic idea: first detect grasp type and then determine the
optimal contact points.

I How to detect grasp type.
I How to use the detected grasp type to define a initial grasp.
I How to optimize multi-finger grasping.

Some relative search topics:
1 Semantic (affordance) detection, human action recognition.
2 Grasp taxonomy.
3 Grasp by component, task-specific grasp.
4 Analysis-base grasp planning.
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Three popular networks (FCN, SegNet/DeconvNet, DeepLab
v2[2]) can be used to perform Pixel-level semantic detection.
No public dataset. We have to build a multi-finger grasping
dataset.

I 8 grasp types are selected from Feix’s grasp taxonomy [4].
I 12 objects with different attribute are contained.

Shape attribute: prismatic,
round, flat.
Task attribute: tool, container,
food box.
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...based on OpenCV GrabCut.
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Assumptions 2
Grasp type g is largely depended on objecto and taskt.

5 tasks: Pick-and-place, Hand-over, pouring, tool-use, opening.
Bayesian rule:

p(g |o, t) =
p(o|g , t)p(t|g)p(g)

p(o)p(t)

=
p(o|g)p(g)p(t|g)p(g)

p(o)p(t)p(g)

=
p(g |o)p(g |t)

p(g)

∝ p(g |o)p(g |t)

(8)

p(g |o) = 1
n∗m ∑

n
i=1∑

m
j=1 p(g |ri ,j) (Pixel-level grasp type detection).

p(g |t) (data statistic).
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After determining grasp type and region, we need to find the
contact points between object and fingers.

I Grasp representation: a low-dimentional representation, e.g.,
Eigengrasps [3].

I Shape representation: e.g., superquarics.
I Grasp optimization.

... still not clear with this part. I will do it later.
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Thanks for your attention! Any questions?
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