

Human-Robot Mutual Adaptation

Waleed Mustafa

University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems

27. November 2017

Outline

1. Motivation And Concrete Example

Motivation Example: Table Carrying Task

2. The model

Introducing the model Bounded-Memory Adaptation Model (BAM) BAM with robot Decision making

3. Experiments

Hypothesis to be tested Experimental Setup Results

4. Conclusion

Conclusion

Motivation

- Robots are destined to be everywhere [6]
- Robot Humans do collaborative tasks
- ▶ In Human teams, *mutual* adaptation increase performance [3]
- Maybe human robot teams benefit from mutual adaptation

MIN Faculty Department of Informatics

Human-Robot Mutual Adaptation

Motivation And Concrete Example - Example: Table Carrying Task

Example: Table Carrying Task

(a)

Courtesy of [4]

(b)

<ロ> <日> <日> <日> <日> <日> <日</p>

Motivation And Concrete Example - Example: Table Carrying Task

- Human and Robot have the common task to get a table out of room
- Two strategies possible:
 - Goal A: Robot facing the door and human facing away
 - Goal B: Robot facing away and human facing door
- Robot prefers Goal A because sensors of his front are stronger
- Human may prefer Goal B

MIN Faculty Department of Informatics

- Motivation And Concrete Example Example: Table Carrying Task
 - Two possible handling:
 - Either Robot insist on his strategy: human trust lost! [1]
 - Or Robot adapt to Human: performance is lost!
 - The trade-off between Performance and Trust
 - Different humans have different adaptability

The model - Introducing the model

Human-Robot Mutual Adaptation

Introducing the model

- Nikolaidis et al. proposed to model human adaptation behaviour
- The model of Human is a finite-state stochastic controller
- The Human has a number of collaboration modes
- The human chooses among them based on historical interactions and his adaptability
- The model of human behaviour is embedded in the robot decision process

The model - Bounded-Memory Adaptation Model (BAM)

MIN Faculty Department of Informatics

Human-Robot Mutual Adaptation

Bounded-Memory Adaptation Model (BAM)

- Human policy π^H is modeled as PFA
- The set of states are $Q: X^{\text{world}} \times H_t$
 - X^{world} is the set of possible world states,
 - and H_t is the set of possible histories
 - The Human model has Bounded-Memory (i.e., forgets history beyond (t-k)th step)

The model - Bounded-Memory Adaptation Model (BAM)

MIN Faculty Department of Informatics

Human-Robot Mutual Adaptation

Bounded-Memory Adaptation Model (BAM) (cont.)

- After human action a^H and robot action a^R ,
 - A human chooses to stay with his mode u^H with probability 1α or,
 - changes to the robots mode u^R with probability α

Courtesy of [4]

- The robot follow a Mixed Observable Markov Decision Model (MOMDP) [5]
- State Variables X, Y, where X is observable task steps and robot-human modal policies, Y unobservable human adaptability α
- π^H is the human stochastic policy
- The robot takes actions to maximize expected reward (with considering human actions)

The model - BAM with robot Decision making

The model - BAM with robot Decision making

MIN Faculty Department of Informatics

Human-Robot Mutual Adaptation

The model in action

Hypothesis to be tested [4]

- H1: Fixed vs. Mutual adaptation:
 - Trust-worthiness?
 - Team Performance?
- H2: Mutual Adaptation vs. Cross-training:
 - Human follows robot preference?
- H3: Mutual Adaptation vs. Cross-training:
 - Perceived teammate performance?

Experimental Setup

- Three conditions:
 - Fixed session: A robot executes fixed policy regardless of human preference
 - Mutual adaptation: The robot executes the policy inferred from the presented model
 - Cross-Training: The robot executes a policy that highly adaptable to human reference
- Human experiment on a video simulation

Experiments - Experimental Setup

MIN Faculty Department of Informatics

Experiments - Experimental Setup

Human-Robot Mutual Adaptation

Experimental Setup (cont'd)

- Participants answer a questionnaire
 - five-point Likert scale
 - Questions taken mostly from Hoffman [2]
- Subject allocation:
 - Amazon's Mechanical Turk
 - 18-65 years old
 - Trap questions to exclude non-serious participants

- Q1: "HERB is trustworthy."
- Q2: "I trusted HERB to do the right thing at the right time."
- Q3: "HERB is intelligent."
- Q4: "HERB perceived accurately what my goals are."
- Q5: "HERB did not understand how I wanted to do the task."
- Q6: "HERB and I worked towards mutually agreed upon goals."
- Q7: "I was satisfied with HERB and my performance."
- Q8: "HERB and I collaborated well together."
- Q9: "HERB made me change my mind during the task."
- Q10: "HERB's actions were reasonable."

Courtesy of [4]

Results

- H1: Fixed vs. Mutual adaptation (Two-tailed Mann-Whitney test):
 - Mutual-Adaptation is trust-worthy (p = 0.048)
 - No statistically significant data for team performance or human satisfaction
- H2: Mutual Adaptation vs. Cross-training:
 - ▶ 57% adapted to the robot in Mutual-adaptation mode
 - 26% adapted to the robot in Cross-Training
 - ▶ χ²-test (p = 0.036)
- H3: Mutual Adaptation vs. Cross-training:
 - Robot performance as team-mate not worse than cross-training
 - One tailed unpaired t-test (p < 0.05) in all categories</p>

	Cross-Training	Bounded-Memory Adaptation
Policies	Learned through interaction and role-switch	Selected from giv- en Model policies
Human Adapta- tion model	Implicitly modeled	Explicitly Modeled
Push Human to adaptation	Low	High

Conclusion

- Adaptation in Human teams lead to better performance
- We presented an approach to reach coadaptation between Humans and Robots
- Experiment on Human participants showed that it is indeed the case that coadaptation lead to better performance and trust in human-robot teams

References

References

- P. A. Hancock, D. R. Billings, K. E. Schaefer, J. Y. C. Chen, E. J. de Visser, and R. Parasuraman. A Meta-Analysis of Factors Affecting Trust in Human-Robot Interaction. *Human Factors: The Journal of the Human Factors and Ergonomics Society*, 53(5):517–527, oct 2011. ISSN 0018-7208. DOI:10.1177/0018720811417254. URL http://journals. sagepub.com/doi/10.1177/0018720811417254.
- [2] G. Hoffman. Evaluating fluency in human-robot collaboration. In International conference on human-robot interaction (HRI), workshop on human robot collaboration, volume 381, pages 1–8, 2013.

References

References (cont.)

- [3] J. E. Mathieu, T. S. Heffner, G. F. Goodwin, E. Salas, and J. A. Cannon-Bowers. The influence of shared mental models on team process and performance. *Journal of Applied Psychology*, 85(2):273–283, 2000. ISSN 1939-1854. DOI:10.1037/0021-9010.85.2.273. URL http://doi. apa.org/getdoi.cfm?doi=10.1037/0021-9010.85.2.273.
- [4] S. Nikolaidis, D. Hsu, and S. Srinivasa. Human-robot mutual adaptation in collaborative tasks: Models and experiments. *The International Journal of Robotics Research*, 36(5-7): 618-634, jun 2017. ISSN 0278-3649.
 DOI:10.1177/0278364917690593. URL http://journals.sagepub.com/doi/10.1177/0278364917690593.

References

References (cont.)

- [5] S. C. W. Ong, S. W. Shao Wei Png, D. Hsu, and W. S. Wee Sun Lee. Planning under Uncertainty for Robotic Tasks with Mixed Observability. *The International Journal of Robotics Research*, 29(8):1053–1068, jul 2010. ISSN 0278-3649. DOI:10.1177/0278364910369861. URL http://journals. sagepub.com/doi/10.1177/0278364910369861.
- [6] S. S. Srinivasa, D. Ferguson, C. J. Helfrich, D. Berenson,
 A. Collet, R. Diankov, G. Gallagher, G. Hollinger, J. Kuffner, and M. V. Weghe. HERB: a home exploring robotic butler. *Autonomous Robots*, 28(1):5–20, jan 2010. ISSN 0929-5593.
 DOI:10.1007/s10514-009-9160-9. URL http: //link.springer.com/10.1007/s10514-009-9160-9.