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I Autonomous robots should be able to navigate in previously
unknown environments, without relying on pre-built maps

I Robots must create a map of their environment, while
exploring it

I Robots’ extrinsic sensors (e.g. laser rangefinders or cameras)
capture the environment to build the map

I They either capture landmark locations (feature based) or the
environment is divided into grid cells which can either be
occupied or not
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I Always uncertainty in the measurements
I Robot must observe the environment multiple times to find

true values by statistical means
I Sensors that track the robot’s movements are also noisy ->

mapping is difficult
I Without accurate map -> localization is difficult
I SLAM is a ’chicken and egg problem’
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I While robot moves through the environment, uncertainty of
mapped landmarks and robot’s pose grows

I Produced map is highly inaccurate
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I When robot returns to a known landmark, its own pose can be
determined more accurately

I Positions of landmarks can then be updated
I Traversing environment multiple times increases the accuracy

of the map
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I Goal of Full SLAM is to generate map (e.g. locations of all
landmarks) and reconstruct the entire path the robot took

I Online SLAM also for generating map but does not keep track
of all previous positions

I Only current pose is to be estimated
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I Several algorithms and their variations that attempt to solve
SLAM problem

I They compute the most probable locations of landmarks mi
and robot’s pose xt or path {x0, x1, ..., xt}

I Estimation is based on readings of robot’s movement
(odometry or velocity) ut , observations of the environment zt
and previous poses of the robot

Sebastian Lembcke – SLAM 10 / 29



Extended Kalman Filter
Introduction Extended Kalman Filter Rao-Blackwellized Particle Filters Visual Loop-Closure Detection References

I Extended Kalman Filter (for online SLAM) computes
probability distributions for each landmark location and robot’s
pose

I All distributions are Gaussian. Output is a mean value vector
and a covariance matrix for the current point in time

I Input is mean value vector and covariance matrix for last time
step + executed motion and current observation
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I Works in two steps -> prediction and correction step
I Prediction step computes distributions based on the robot’s

movement
I Motion model is applied to previous location
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I Motion model is matrix for translations and rotations
I Resulting function is locally linearized to maintain Gaussian

distributions
I Normally distributed noise is added
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I Correction step -> predicted observation is computed by
applying observation model

I Again linearized to maintain Gaussian distributions
I Again normally distributed noise is added
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I Kalman Gain is computed, weighting factor between predicted
observation and actual observation

I Based on uncertainty of motion and sensor observations. If
observation is very uncertain, prediction is weighted more and
vice versa
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I Particle filters are not restricted to paramentric distributions,
like Gaussians

I Distributions are represented as sets of samples (particles)
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I Each sample represents a possible current pose of the robot
and all landmark location estimates as Gaussian Distributions
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I Particle filter computes robot’s pose at current time step by
applying motion model based on ut .

I Particles are ’moved’ and noise is added (more particles)
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I For every particle, predicted landmark locations are computed
according to observation model

I Each particle is weighted according to how good its estimates
of the landmark locations are by taking into account the
current sensor observations zt
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I By using one Extended Kalman Filter on each landmark of
every particle, map is updated

I Particles are resampled by selecting fixed number of particles
with their weight being proportional to probability of selection
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I Odometry is unreliable for detecting loops in the robot’s path
I System must rely on recognizing previsouly seen parts of the

environment
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I Camera images are potentially feature rich
I Places can be recognized by their visual features

Example of geometric verification [3]
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I System builds a topological map of places
I Previously unseen places are added, known places are

recognized as seen
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I Many approaches use the Bag-of-Visual-Words model
I Features are extracted from a large set of images and clustered

for dimensionaility reduction (e.g. K-Means Clustering)
I Clustered features are called visual words of visual vocabulary
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I Images can be represented as word vectors
I Words are not independent -> cooccurrence
I Taking cooccurrence into account leads to better place

recognition
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I Recent approach with convolutional neural networks for place
recognition [4]

I Image classification network was trained on imagenet dataset
I Feature vectors before fully connected layers were further

processed
I Principal component analysis for dimensionality reduction
I Outperformed ’hand-crafted’ feature based method

Architecture for Accurate model of OverFeat [4]
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I Features must be invariant towards illumination, scale etc.
I Dynamic objects blocking view
I Features are specifically designed to fit certain environments
I Similar looking images lead to false loop-closure

Similiar looking images [5]
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