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Motivation for Visual Perception in Robotics
Motivation Triangulation Approaches Time of Flight Approaches Conclusion References

I basic question for mobile robotics: Where am I?
I autonomous movement through unknown terrain

I scan environment for obstacles
I distances to surroundings

Possible solution
Add visual perception sensors, to allow robots to “see” their
environment.
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Camera
Motivation Triangulation Approaches Time of Flight Approaches Conclusion References

I image as projection of 3D world: leads to loss of depth data
I estimate depths through known size of an object and size of

the object in the image.
I error-prone, even in human visual perception
I not applicable outside of known surroundings
I passive approach

Stump in Sequoia National Park. [1, p. 529, fig. 2]
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Triangulation Approaches
Motivation Triangulation Approaches Time of Flight Approaches Conclusion References

I compute point through known distance and measured angles

Triangulation. [7, p. 19, fig. 1] Triangulation Calculation. [7, p. 20, fig. 1]
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Stereoscopic Cameras
Motivation Triangulation Approaches Time of Flight Approaches Conclusion References

I one camera not sufficient for meaningful depth measurements
I use second camera to recover lost dimension
I triangulate distance

I known baseline between cameras
I corresponding points
I measured angles

I passive approach

Rotated stereo-camera rig and a Kinect. [6, p. 5, fig. 1.2]
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Stereoscopic Cameras
Problems
Motivation Triangulation Approaches Time of Flight Approaches Conclusion References

I identification of
corresponding points in both
images

I occlusion
I computationally expensive
I depends on illumination
I cameras need to be

synchronized

Stereo-Camera example. [5, p. 38, fig. 2.1]
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Structured-Light
Motivation Triangulation Approaches Time of Flight Approaches Conclusion References

I project additional information on the object to allow recovery
of lost depth dimension

I several different approaches
I time multiplexing
I spatial multiplexing
I wavelength multiplexing
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Binary Projection
Motivation Triangulation Approaches Time of Flight Approaches Conclusion References

I one camera, one projector
I several passes required
I deformity of lines as measure for depth
I time multiplexing
I active approach

Binary projection. [7, p. 30, fig. 1]

Binary projection at different

times t. [7, p. 33, fig. 1]
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Binary Projection
Problems
Motivation Triangulation Approaches Time of Flight Approaches Conclusion References

I frames taken at different points in time
I time multiplexing
I not applicable for moving objects

I points directly on edges are uncertain
I soultion: gray code pattern

Gray code projection at dif-

ferent times t. [7, p. 33, fig.

1]
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Microsoft Kinect
Motivation Triangulation Approaches Time of Flight Approaches Conclusion References

I RGB camera: 30fps @
640x480px

I spatial multiplexing
I USB 2.0

I depth image: 30fps @
320x240px

I practical range [4]
I 0.8-4.5m in default mode
I 0.4-3m in near mode

Microsoft Kinect. [3, p. 2, fig. 1-1]
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Microsoft Kinect
IR Laser Emitter
Motivation Triangulation Approaches Time of Flight Approaches Conclusion References

I projection
I pseudo random noise-like

pattern
I 830nm wavelength

I laser
I heated/cooled to maintain

wavelength
I 70mW output power
I eye safety through scattering

Projected IR pattern. [3, p. 12, fig. 2-2]
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Microsoft Kinect
Depth Image
Motivation Triangulation Approaches Time of Flight Approaches Conclusion References

I IR camera image compared to known pattern
I disturbances can be used to calculate distances

I distances visualized as depth images
I red areas: close
I blue areas: further away
I black areas: no depth information available

Depth image and corresponding RGB image. [3, p. 9, fig. 1-3]
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Microsoft Kinect
Problems
Motivation Triangulation Approaches Time of Flight Approaches Conclusion References

I overexposure of IR camera
I by sunlight (only usable indoors)
I by reflecting surfaces

I only close range distances
I limited by laser output

I translucent objects not measurable
I latency of ~100ms [4]
I active approach, not easy to scale-out

I interferences with projected patterns
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Triangulation Approaches Conclusion
Stereo Cameras
Motivation Triangulation Approaches Time of Flight Approaches Conclusion References

I good to calculate depths for distinct markers
I otherwise computationally expensive

I works indoors and outdoors
I completely passive, scaling out is possible without problems
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Triangulation Approaches Conclusion
Structured-Light Cameras
Motivation Triangulation Approaches Time of Flight Approaches Conclusion References

I all approaches
I trouble measuring reflecting or transparent objects

I time multiplexing
I depth calculation for whole field of vision
I only for stationary objects

I spatial multiplexing (Kinect)
I computation done by hardware
I pretty complete depth map

I occluded areas
I too close or too far points

I wavelength multiplexing
I depth calculation with one photo
I low spatial resolution achievable
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Time of Flight Approaches
Motivation Triangulation Approaches Time of Flight Approaches Conclusion References

I actively send out a signal
I measure time until reflection returns
I Light: P =

299.792.458m
s ∗t

2

Simple ToF measurement. [8, p. 28, fig. 1.14]
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Depth Camera
Motivation Triangulation Approaches Time of Flight Approaches Conclusion References

I active approach
I TX: illuminates whole scene

with array of IR emitters
I RX: ToF-receiver grid
I commonly used: sinus

modulation for emitted light
I measure point in time when

emitted signal returns
I calculate distance through

ToF
MESA Imaging SR4000, IR emitters. [8, p. 32, fig. 1.16]
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Depth Camera
Problems
Motivation Triangulation Approaches Time of Flight Approaches Conclusion References

I hardware restrictions
I IR-emitter and

ToF-receievers in different
position

I simulate central emitter to
avoid occlusion effects

I falsification of measurements
through multi path hopping
I point B will measure a

combination of two distances
I accurate time measurement

required

Pattern of IR emitters to avoid occlusion. [8, p. 34, fig.

1.17]

Multipath phenomenon. [8, p. 104, fig. 3.16]

G. Glaser – Visual Perception Sensors 19 / 27



Kinect V2
Motivation Triangulation Approaches Time of Flight Approaches Conclusion References

I depth image: 50fps @
512x424px

I range 0.5-8m [4]
I latency of ~50ms [4]
I square wave modulation
I differential pixel array

I switches with square wave
I save returned light
I difference used to compute

distances
I high volume of data, requires

USB 3.0

Kinect V2. [4, p. 6, fig. 1-5]
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LIDAR
Motivation Triangulation Approaches Time of Flight Approaches Conclusion References

I Light Detection And Ranging
I sends out single laser beam
I ToF to calculate distance
I single point sampling

I mirrors rotate laser beam to
scan line of points

I additional rotation possible
to scan area instead of line

Simple ToF measurement. [8, p. 28, fig. 1.14]

Point clouds created by rotated line scanners. [2, p. 46, fig. 2.21]
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LIDAR
Problems
Motivation Triangulation Approaches Time of Flight Approaches Conclusion References

I loss of spatial resolution with increased measurement distance
I transparent objects can not be measured
I mechanical moving parts
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Time-of-Flight
Conclusion
Motivation Triangulation Approaches Time of Flight Approaches Conclusion References

I high laser outputs possible
I high measurement range
I sunlight can be compensated

I high sampling rates possible
I dynamic measurement range

I short and long distances can be measured together
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Conclusion
Required Ambient Lighting
Motivation Triangulation Approaches Time of Flight Approaches Conclusion References

I structured light approaches require dark surroundings
I often used for optical measurements and inspection in industrial

robotics
I very precise measurements

I LIDAR can be built for outdoor usage
I other active approaches falsified/annulled by direct sunlight
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Conclusion
Computational Costs
Motivation Triangulation Approaches Time of Flight Approaches Conclusion References

I active approaches
I distance calculation mostly handled by hardware

I stereoscopic cameras
I expensive: calculate matching points in both images
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Conclusion
Moving Objects
Motivation Triangulation Approaches Time of Flight Approaches Conclusion References

I depth cameras, spatial multiplexing structured light
I well suited
I record whole scene at single point in time

I binary projection
I not usable, time encoding through different frames

I LIDAR
I suitability depends on sampling rate and object movement

Triangulation Time-of-Flight
Stereo Camera Binary Projection Kinect Kinect V2 LIDAR

outdoor usability 3 7 7 7 (3)
complete depth map (7) 3 3 3 (3)
passive 3 7 7 7 7
scale out 3 (7) (7) (3) (3)
moving parts 7 7 7 7 3
“cheap” (3) 7 3 3 7
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