Motion Planning in Exploration Missions

CHRISTIAN KÖRNIG

Exploring an unknown Map

Goal: Safe and autonomous exploration of unknown Terrain

Use Cases:

• Scientific Exploration:

Other celestial bodies, hardly accessible locations, ...

• Commercial Exploration:

Automated recurrent exploration like industrial inspection, crop mapping, ...

Subproblems

Exploration combines several different fields of robotics

- Localization
- Mapping
- Path planning in already explored areas
- Determining best exploration path

Has to run in real time on the robot's hardware!

Localization and Mapping is assumed to work

Path Planning

Determine the fastest collision-free path between \vec{x}_{start} and \vec{x}_{goal} in the known space V

- Split *V* into cells \vec{x}_i
- Set \vec{x} to \vec{x}_{start}
- Until \vec{x} is \vec{x}_{goal} :
 - Calculate cost for moving from \vec{x} to neighboring cells \vec{x}_i
 - Calculate expected total cost for moving from \vec{x}_j to \vec{x}_{goal}
 - $\circ~$ Set \vec{x} to neighbor with lowest expected total cost
- > Biases cell evaluation towards \vec{x}_{goal}
- > Heuristic for determining this direction is needed!
 - Usually: linear distance to goal $|\vec{x}_i \vec{x}_{goal}|$ is used

[P. Hart et. al., 1968]

- Initialize tree T with root node $ec{x}_{start}$
- For k points:
 - Generate random point \vec{x}_R
 - Find closest node $\vec{x}_C \in T$
 - Add edge from \vec{x}_C towards \vec{x}_R (maximum length Δx)

[S. LaValle, 1996]

Comparison A* vs RRT

A*

- Grid-based
- Builds around starting point
- Finds (close to) optimal path
- Needs good heuristic

RRT

- Continuous space
- Biased towards large unexplored regions
- Path cost higher by factor 1.3 2.0
- Handles kinematic constraints and dynamics

Good if optimal path in small space is needed

Good for large volumes and highdimensional problems

Exploration Planning

Determine the shortest set of paths to map the unknown space $V_{unmapped}$ while staying in the known space V_{mapped}

Determining the exploration path

Information gain

- How much additional information $G(\vec{x})$ do I gain by moving to position \vec{x} $G(\vec{x}) = \int_{V} d^{3}\vec{x}' \ Visible(\vec{x}, \vec{x}') \cdot Unmapped(\vec{x}')$ $Visible(\vec{x}, \vec{x}') \in \{0, 1\}, \ Unmapped(\vec{x}') \in \{0, 1\}$
- In applications: discretize volume into voxels \vec{x}_i $G(\vec{x}) \rightarrow \tilde{G}(\vec{x}_i) = \sum_j Visible(\vec{x}_i, \vec{x}_j) \cdot Unmapped(\vec{x}_j)$

Next-Best-View

- Find the point \vec{x}_{best} where the information gain is at maximum
- Often a cost factor is added: $\tilde{G}'(\vec{x}_i) = \tilde{G}(\vec{x}_i) e^{-\lambda c(\vec{x}_i)}$

Until map is explored:

- Find borders between free and unknown space in the map
- Evaluate information gain at each border
- Go to best point
- Update map from this view

[B. Yamauchi, CIRA, 1997]

Information Gain: G(0,4) = 3

Information Gain: G(0,2) = 3

Information Gain: G(5,4) = 6

Information Gain: G(6,3) = 8

Information Gain: G(5,2) = 6

Pro

- Information Gain in each step is maximized
- Deterministic
- Low number of views

Contra

Computationally expensive

Until map is explored:

- Span RRT with *k* branches
- Evaluate information gain at each node
- Move one edge towards the best node
- Update map from this view
- Store best branch for next iteration

[A. Bircher et. al, ICRA, 2016]

Pro

- Scales very good for large areas
- Fast computation

Contra

- Stable localization and mapping is needed
- Non-ideal paths

Comparison Frontier vs Receding Horizon

Gazebo based simulation benchmark with hexacopter MAV:

	Small Scale Area: 20x10x3m, Resolution 0.4m		Large Scale Area: 50x26x14m, Resolution 0.25m	
	Frontier	Receding Horizon	Frontier	Receding Horizon
t _{tot}	469.7s	501s	70% after 1670 min	43.8 min
t_{comp}^{tot}	83.8s	15.2s	1660 min	9.4 min
t_{comp}^{step}	5.7s	0.15s	25.9 min	1.6 s

[A. Bircher et. al, ICRA, 2016]

- Frontier-based planning results in better paths but is unfeasible in large environments
- Fast calculations in Receding Horizon planning compensates the non-optimal path

Summary

Conclusion

- Two different approaches for path planning and exploration were presented
- Accurate algorithms scale poor in large spaces \rightarrow randomized approaches needed

Outlook

- There are many, many more algorithms
 - > Have to find the one that matches your problem the best
- Important addition: Multi-Agent-Planning
 - Dedicated talk on this topic!