

Introduction to Robotics Assignment #1 Due: 25.04.2017, 23:59

Task 1.1 (8 points) Pyramid: A pyramid (square base AB = BC = CD = DA = 16 cm; plumb-line $ME = 35 \, cm$, with vertex E located at the top and point M located at the center of the base) is held by a robot so that its square base ABCD is located in the xy-plane of a cartesian world coordinate frame M_{xyz} , with point M at its origin, the edges AB and CD parallel to the x-axis and the edged BC and AD parallel to the y-axis. Attached to the pyramid is an object coordinate frame M_{uvw} , which initially coincides with M_{xyz} . Write down the general formula for each rotation.

1.1.1 (4 points): Determine the locations of the vertices A through E, after the following sequence of rotations has been performed by the robot:

- 1. Rotation by $\psi = -45^{\circ}$ around M_w
- 2. Rotation by $\phi = 135^{\circ}$ around M_u
- 3. Rotation by $\theta = 60^{\circ}$ around M_v

1.1.2 (4 points): Same sequence of rotations, but using the rotation axes M_z , M_x and M_y instead.

Task 1.2 (6 points) Homogeneous transformations: Given are three frames A, B and C as well as the following two homogeneous transformations:

$^{A}T_{B} = $	$ \begin{array}{c} 1/\sqrt{2} \\ -1/\sqrt{2} \\ 0 \\ 0 \end{array} $	$\begin{array}{c} 1/\sqrt{2} \\ 1/\sqrt{2} \\ 0 \\ 0 \end{array}$	$egin{array}{c} 0 \\ 0 \\ 1 \\ 0 \end{array}$	1 1 0 1_	
$^{B}T_{C} =$	$\begin{bmatrix} \sqrt{3}/2 \\ 1/2 \\ 0 \end{bmatrix}$	$-1/2 \ \sqrt{3}/2 \ 0$	$\begin{array}{c} 0 \\ 0 \\ 1 \end{array}$	$\begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}$	

and

	$\sqrt{3}/2$	$-1/2 \ \sqrt{3}/2 \ 0$	0	2]	
${}^{B}T_{C} =$	1/2	$\sqrt{3}/2$	0	1	
	0	0	1	0	
	0	0	0	1	

1.2.1 (3 points): Can the interpretation of the transformation ${}^{A}T_{C}$ be assumed to be unambiguous? Please explain.

1.2.2 (3 points): Visualize the three coordinate systems with a tool of your choice.

Task 1.3 (6 points) Euler angles:

1.3.1 (4 points): Give four examples of Euler angle combinations (ϕ, θ, ψ) and interpret their geometric meaning using natural language.

"This is a rotation around x by ϕ " is not sufficient. Explain the properties of the transformation.

1.3.2 (2 points): There are 12 possible sequences of rotations with Euler-angles around the axes (see slide 29). Explain why there are exactly 12!