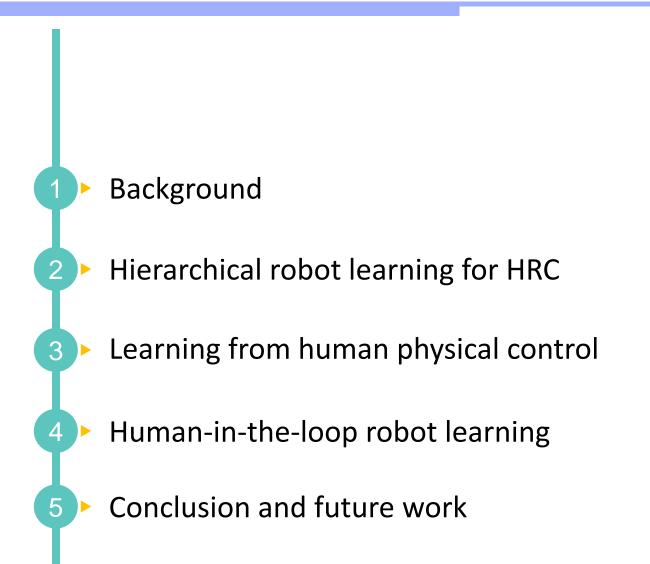
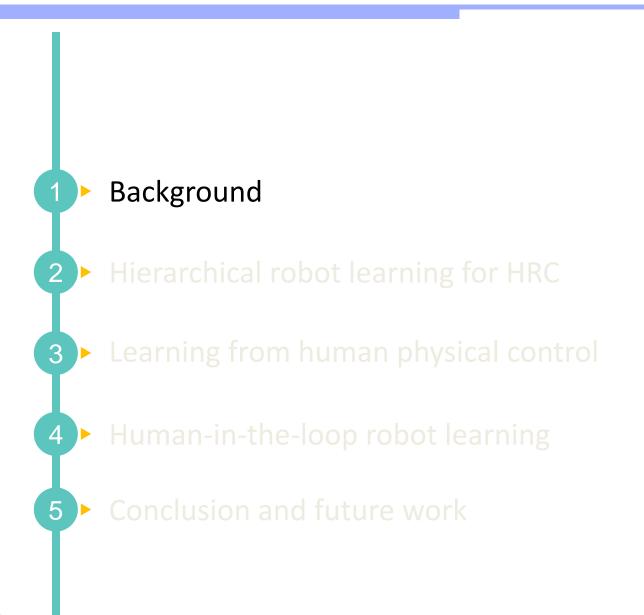


Interactive Reinforcement Learning for HRI

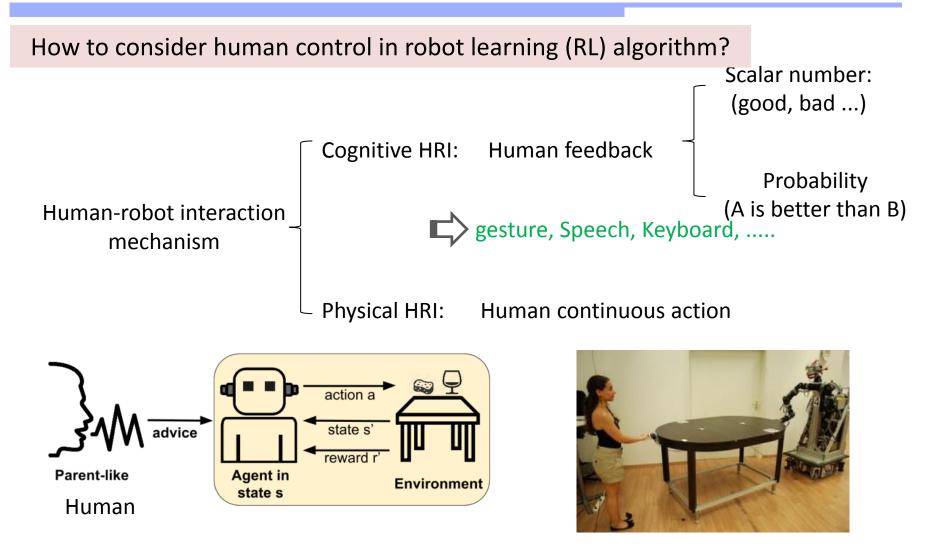
Zhen Deng

13. June 2017





1. Backgorund: HRI, IRL



Cognitive HRI: Bi-directional multi-model communication and understanding **physical HRI:** Exchange of the contact force, coordinated operation

1. Backgorund: HRI, IRL

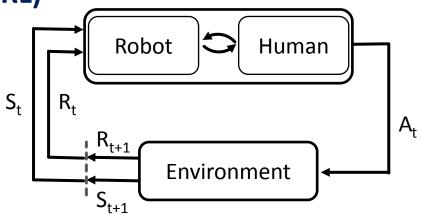
Interactive reinforcement learning (IRL)

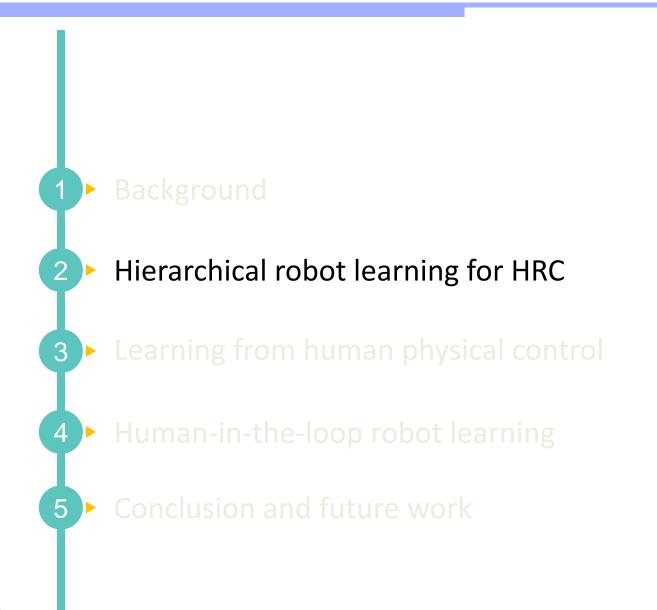
The human provides a feedback or advice to guide the exploration of the robot.

- ... more sample-efficiency.
- ... a coupling of the human and robot

Four techniques: [Peter Stone, 2012]

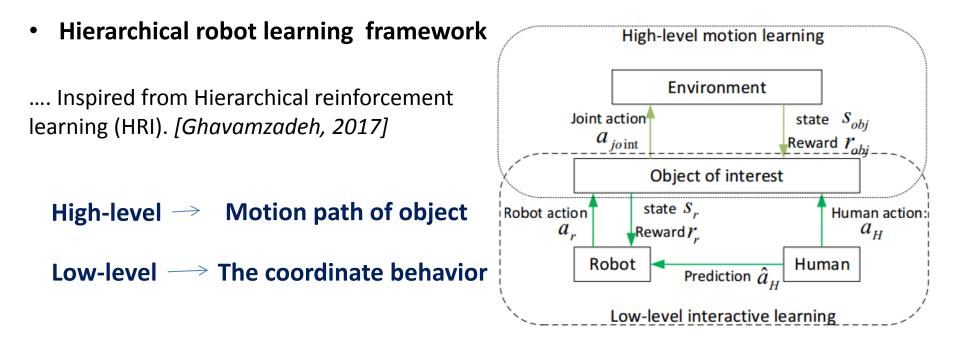
- 1. Reward shaping: $R'(s,a) = R(s,a) + \beta * H(s,a)$
- 2. Q-value augmentation: $Q'(s,a) = Q(s,a) + \beta * H(s,a)$
- 3. Action biasing: $Q'(s,a) = Q(s,a) + \beta * H(s,a)$, Only during action selection
- 4. Control sharing: $P(a = \operatorname{argmax}[\hat{H}(s, a)]) = \min(\beta, 1)$, Otherwise use the RL agent's action selection mechanism
 - Where, H(s,a) is the shaping function.





Hierarchical Robot Learning for Physical Collaboration between Humans and Robots

- **Goal**: the robot learns to cooperate with the human for HRC task
- Two requirements for the desired robot behavior:
 - 1. The human-robot joint action is able to accomplish the task toward the common goal.
 - 2. The robot should adapt to the human operation capability.



A. High-level Motion Learning with Policy Search

- 1. Motion policy is represented by Dynamic Motor Primitive (DMP)
- 2. Optimize policy parameter by using policy search algorithm

$$\ddot{y} = \alpha_y (\beta_y (y_g - y) - \dot{y}) + \tau^{-1} f(x)$$
$$f(x) = \frac{\sum_i^N \omega_i x \psi_i(x)}{\sum_{i=1}^N \psi_i(x)}$$

PoWER, Expectation-Maximization (EM)-based policy search algorithm, preseted by [Jan peter, 2009]

$$\omega' = \omega + \mathbb{E}\left\{\sum_{t=1}^{T} Q_{\pi}(s, a, t) W(s, t)\right\}^{-1} \mathbb{E}\left\{\sum_{t=1}^{T} Q_{\pi}(s, a, t) W(s, t) \varepsilon_{t}\right\}$$

1. High-level Motion Learning:

Respect (for each episode) Performing rollout using motion policy $\pi(\omega)$ Collect all the states, actions and rewards $\{s, a, r\}$ Update motion policy parameter ω using Eq. 4

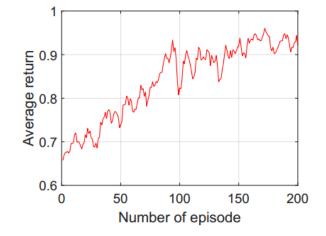


Fig. 3: the return of each episode in high-level motion learning.

B. Low-level Interactive Learning for Active Contributions

1. Policy Evaluation with Function Approximation

 $p(Q_*|x_*,\vartheta,\mathbb{D}) \sim \mathbf{N}(q_*|\mu(x_*),\Sigma(x_*))$

 $Q(s_t, a_t) = Q(s_t, a_t) + \alpha[\mathbb{E}_{s \sim s_{t+1}}[r(s_{t+1})] +$

2. Human action prediction

GP:

Update:

3. Prediction-based Action Selection

 a_{t+1}

Extended Kalman Filter

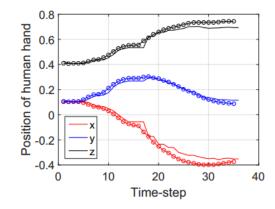
$$x_{*}, \vartheta, \mathbb{D}) \sim \mathbf{N}(q_{*}|\boldsymbol{\mu}(x_{*}), \boldsymbol{\Sigma}(x_{*}))$$

$$= Q(s_{t}, a_{t}) + \alpha[\mathbb{E}_{s \sim s_{t+1}}[r(s_{t+1})] + \gamma \underset{a_{t+1}}{\operatorname{argmin}} \mathbb{E}_{s \sim s_{t+1}}[Q(s_{t+1}, a_{t+1})] - Q(s_{t}, a_{t})]$$

$$X_{K} = \widehat{X_{K}} + K_{k}(Z_{K} - H \cdot \widehat{X_{K}})$$

$$X_{k+1} = A \cdot X_{K} + w \quad with \quad A = \begin{bmatrix} 1 & \Delta t & \frac{1}{2}\Delta t^{2} \\ 0 & 1 & \Delta t \\ 0 & 0 & 1 \end{bmatrix}$$

$$Z_{k+1} = H \cdot X_{K} + v \quad with \quad H = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$



A constraint optimization problem

$$a_r^* = \underset{a_r}{\operatorname{argmin}} Q(s, a_r)$$

s.t. $a_r \in [\alpha a_h - \lambda \sigma_r, \quad \alpha a_h + \lambda \sigma_r]$

Fig. 4: the comparison of the measured position of human hand by sensor (The solid line) and the predicted position from EKF (the dotted line).

Contributions:

- 1. Motion path is learned as the common goal
- 2. Don't assume the human as expert
- 3. Learn to coordinate with the human (human move with a low speed)
- 4. State prediction improve the sampleefficiency of RL.

• Shortages:

- The performance of POWER largely depends on the value of learning parameter (...be careful!)
- 2. the human is required to move slowly.
- 3. The computal complexty cause the delay of control.
- 4. Still need human demonstration to obtain a prior policy

Algorithm 1 Hirerachical Robot Learning with Human Physical Interaction

Inputs: Initial motion policy parameter ω_0 , Iteration number H_1, H_2

1. High-level Motion Learning:

Respect (for each episode) Performing rollout using motion policy $\pi(\omega)$ Collect all the states, actions and rewards $\{s, a, r\}$ Update motion policy parameter ω using Eq. 4

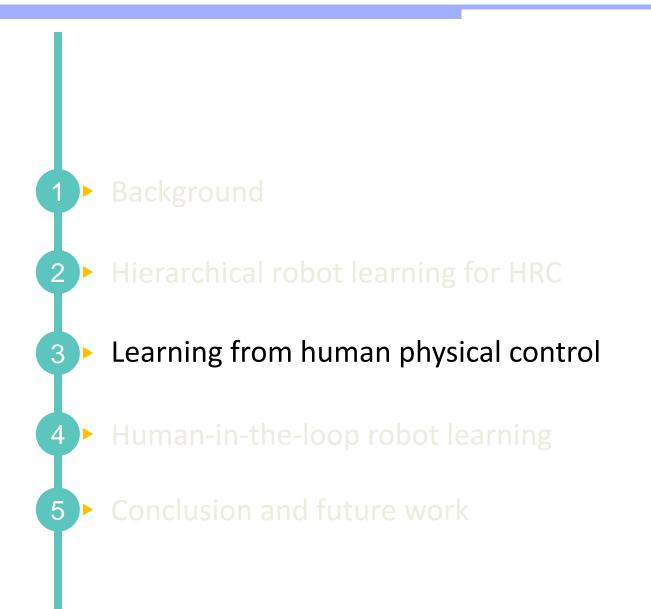
2. Low-level Interactive Learning:

Repeat (for each episode) Initialize state *s* and Q-value GP Repeat (for each step of episode) Predict human action using Eq. 11 Find optimal robot action a_r using Eq.6 Collect observation *s'* and reward r_r Update the Q-value $Q(s, a_r)$ using Eq.12 Set $s \neq s' = a' \neq a'$

Set $s \leftarrow s', a_r \leftarrow a'_r$

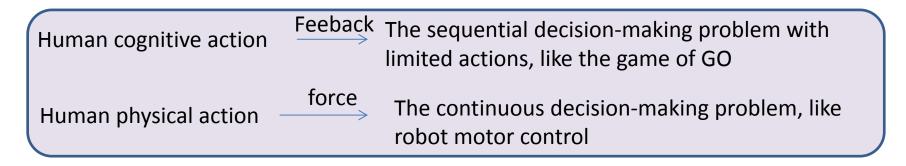
Update Q-value GP by fitting to new Dataset $\ensuremath{\mathbb{D}}$

Fig. 1: Human and robot collaboratively assemble a toy which includes a support and a tray. The assembled task includes two sub-tasks. Figure a) shows the first sub-task where a robot transports the support to a predefined position. Figure b) shows the second sub-task where a human and a robot cooperate to transport a tray.



Interactive reinforcement learning with human physical control

• **Goal**: learning skills autonomously from the physical interaction with human



• Two requirements for physical HRI:

- 1. Sample-efficient learning.
- 2. A ability to adapt to human behavior and learn from human physical control.

• Basic idea:

- 1. Using a virtual impedance model to describe the interactive behavior between the human and the robot
- 2. Using Model Prediction Control (MPC) to assist the RL algorithm
- 3. Utilize human physical action in the RL algorithm

A. Virtual Impedance Mode

the transition of states is built by using the virtual Cartesian impedance model:

 $M\ddot{x}(t) + D\dot{x}(t) = a_r(t) + a_h(t)$

The states pace form of a discrete time system:

$$z(t + \Delta t) = f_z z(t) + f_r a_r(t) + f_h a_h(t)$$

$$z(t) = \begin{bmatrix} x^T \\ \dot{x}^T \end{bmatrix}, f_z = \begin{bmatrix} I_{m \times m} & \Delta t I_{m \times m} \\ I_{m \times m} & -\Delta t M^{-1}C \end{bmatrix}, f_r = f_h = \begin{bmatrix} 0_{m \times m} \\ \Delta t M^{-1} \end{bmatrix}$$

B. Model prediction control

use iteration LQR to implement MPC:

$$\underset{a_{t}}{\operatorname{argmin}} \sum_{i=t}^{T-1} l(x_{t}, a_{r,t}, a_{h,t}) + l(x_{T})$$

s.t. $x_{t+1} = f(x_{t}, a_{r,t}, a_{h,t}), \forall t \in 1, \cdots, T$

$$Q_{x,t} = l_{x,t} + f_{x,t}^T V_{x,t+1}$$

$$Q_{a,t} = l_{a,t} + f_{a,t}^T V_{x,t+1}$$

$$Q_{xx,t} = l_{xx,t} + f_{x,t}^T V_{xx,t+1} f_{x,t}$$

$$Q_{aa,t} = l_{aa,t} + f_{a,t}^T V_{xx,t+1} f_{a,t}$$

$$Q_{ax,t} = l_{ax,t} + f_{a,t}^T V_{xx,t+1} f_{x,t}$$

$$\mathbf{g}_t = u_t + k_t + K_t (\hat{x}_t - x_t)$$
Near-optimal
$$\mathbf{g}_t = -Q_{aa,t}^{-1} Q_a \text{ and } K = -Q_{aa,t}^{-1} Q_{ax,t}$$

Iteration LQR recursively computes the first order Tyler expansion of the dynamic model and the second order Tyler expansion of the action-value function

B. Interactive learning with human physical action

1. Policy evaluation with function approximation

 $p(Q_*|x_*,\vartheta,\mathbb{D}) \sim \mathbf{N}(q_*|\mu(x_*),\Sigma(x_*))$

$$Q(s_t, a_t) = Q(s_t, a_t) + \alpha[r(t+1)] + \gamma \underset{a_{t+1}}{\operatorname{argmin}} (Q(s_{t+1}, a_{t+1})) - Q(s_t, a_t)]$$

2. Reward shaping with human physical action

$$r(s,a) = r_t(s,a) - \beta r_h(s,a)$$

Task-relevant reward: $r_t(x_t, a_{r,t}, a_{h,t}) = (x - x_d)^T Q_1(x - x_d) + \dot{x}^T Q_2 \dot{x}$ Human-relevant reward: $r_h(s, a) = \eta \frac{f_h(t)g(t)}{||g(t)||}$

3. Prediction-based action selection

$$a_r^* = \operatorname*{argmin}_{a_r} Q(s, a_r, a_h)$$

s.t. $a_r \in [g(t) - a_h - \xi_r, g(t) - a_h + \xi_r]$

Algorithm 1 :HITL robot learning.

- Requires: *M* and *C*: two impedance parameters.*Q*₁, *Q*₂, *R*₁ and *R*₂: the weights in the cost function of MPC. α and λ: the learning rate and discount factor of Q-learning, initialize *Q*(*s*,*a*) arbitrarily.
- Perform MPC to find a near-optimal policy until convergence in a simulation environment.
- 3: for iteration k = 1 : K do
- 4: Reset the robot state $s = s_0$.
- 5: **for** time step t = 1 : T **do**
- Receive current state s_T.
- 7: Find a near-optimal impedance action $g(s_t)$ in Eq.7.
- 8: Measure the force f_t exerted by the human.
- 9: Compute optimal robot action a_r^* using Eq.13.
- 10: Compute the reference velocity \dot{x}_r using Eq. 2.
- 11: Compute the reference joint velocity \dot{q}_r using Eq. 4.
- Receive next state s_{t+1} and reward r_t.
- 13: end for
- 14: Update Q(s,a) using Eq. 9 and optimize GPs.
- 15: end for

Combining the model-based planning and human teaching to Guide the exploration of the RL

C. Experiments

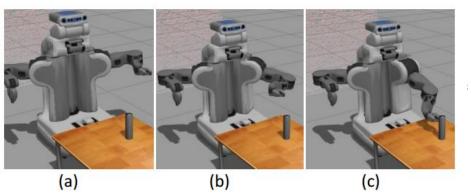
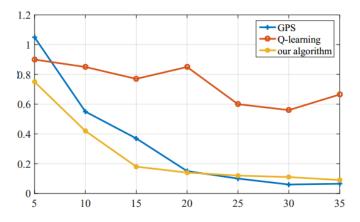
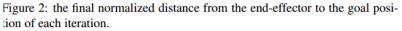
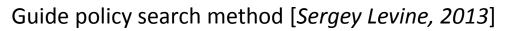
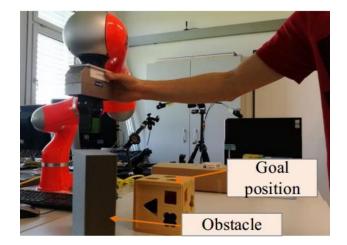


Figure 1: Three consecutive snapshots shows a successful reaching task in Gazebo simulator (a-c).









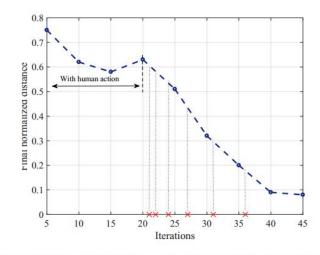
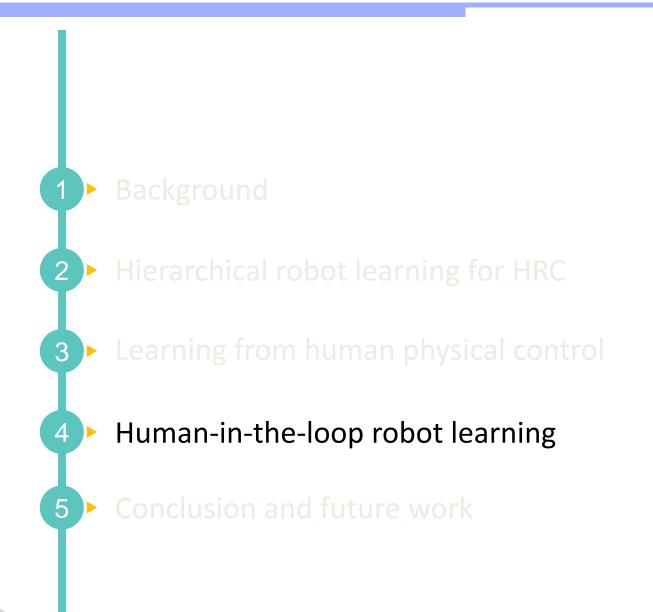


Figure 7: the final normalized distance from the end-effector to the goal posiion of each iteration.



4. Human-in-the-loop robot learning

Human-in-the-loop robot learning with Multi-modal interaction

- Goal: learning skills from Multi-modal interaction in Multi-task problem
- Problem Setting:
 - 1. A complex task with a set of sub-task.
 - 2. Robot learn to obtain a sub-task sequence to decompose the complex task.
 - 3. Robot learn the underlying policy to instance each select sub-task.
 - 4. Human may assist robot learning through human speech or human physical control.

The complex task is decomposed under the option framework [Sutton, 1999]

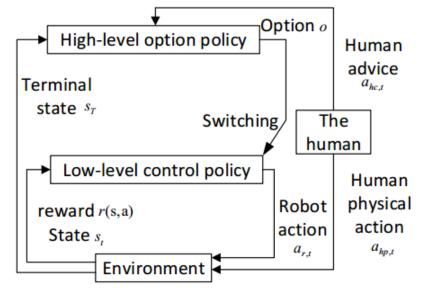
option $o = <\pi_o, I_o, \beta_o >$

High-level \rightarrow to find a optimal option sequence

 $:< o_1, o_2, ..., o_n >$

Low-level → optimize the underlying control policy of the select option

 $\pi_{o1},\pi_{o2},\ldots,\pi_{on}$



4. Human-in-the-loop robot learning

A. High-level Option learning with MTCS

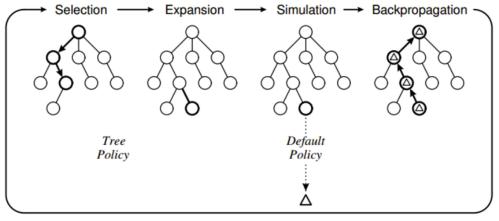
- .. Is a sequential MDP with limited actions Possible nodes:
 - 1. Pick a object *i*
 - 2. Place a object *i*
 - 3. Clear table
 - 4. Go home
 - a. Without human advice

using the Upper Confidence Bound (UCB) policy

$$UCB = \frac{V_i}{N_i} + c \sqrt{\frac{\ln N}{N_i}}$$

B. Low-level control policy learning

Is same to the above method introduced in section 3.



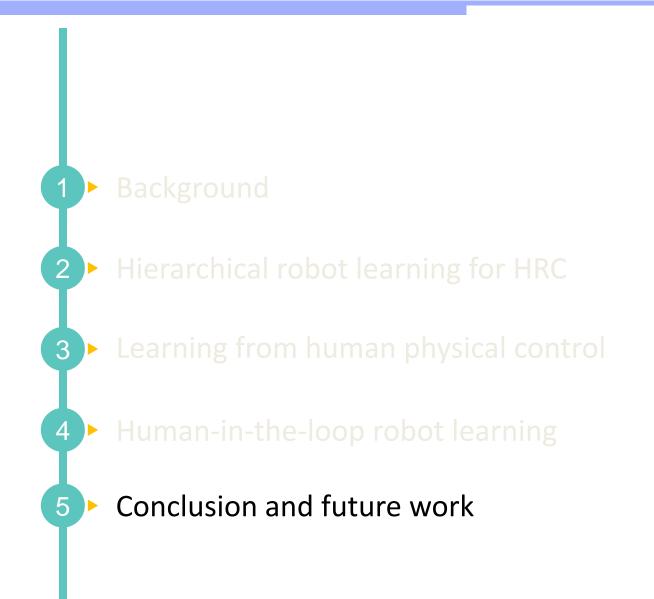
b. With human advice

function: SelectAction(n, c) if human advice h via SAR system then if rand i= feedbackProbability then $o \leftarrow advice$ $n' \leftarrow None(s, o)$ if n' in childNode(n) then Return oelse addChildNode(n, n')

else

$$o \leftarrow \operatorname{argmin}_{o} \{ \frac{v_i}{n_i} + c \sqrt{\frac{\ln n_i}{n_i}} \}$$

Return o



5. Conclusion

1. to improve the sample-efficient of RL algorithm.

Model-based planning method.

Continuous setting ← Dynamic programming, like iteration LQR Discrete setting ← Monte Carlo Tree Search (MTCS)

Experience replay

reusing its past experiences from a experience memory to speed up the convergence.

Human teaching

Human provides feedback or advice to guide the exploration of the learning agent

• Imitation learning / transfer learning

- 1. Represent and generalize the knowledge from human demonstration or other learning method
- 2. Then directly give the samples or a prior policy to agent

GPS [peter abbeel, 2015]

Alphago



Deep Q network (DQN)

5. Conclusion

2. to utilize human cognitive or physical action in RL algorithm.

• By using a shaping function.

Human's control objective \rightarrow a shaping function

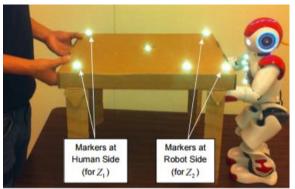
- $Q'(s,a) = Q(s,a) + \beta * H(s,a)$
- But how to learn from the continuous human control is still unknown?
 - 1. By taking it as a noisy
 - 2. Inverse reinforcement learning

Record human optimal operation to estimate the value function for RL

3. By predicting the human state.

Human future state \rightarrow human-specific goal

[Ghadirzadeh, 2016]



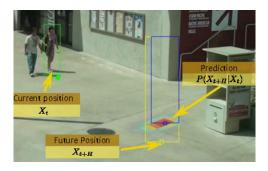
[Thobbi, 2016]

5. Future work

Prediction of human

nextState = *f*(*currState*, *humanAction*)

Predict & recognize: Human dynamic , human intension , human pose, human action, human preference



• Deep reinforcement learning (DRL)

Deep \rightarrow a better approximation ability, like can process complex sensory input RL \rightarrow a trail-and-error process, can choose optimal action

Human-in-the-loop robot learning

- 1. How to achieve the co-adapt and co-learning between humans and robots
- 2. A risk-aware RL to keep the environment and human safety
- 3. Sample-efficient Learning from human physical control in continuous setting

