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1. Backgorund: HRI, IRL

How to consider human control in robot learning (RL) algorithm?

Human-robot interaction
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Cognitive HRI: Bi-directional multi-model communication and understanding

physical HRI: Exchange of the contact force, coordinated operation



1. Backgorund: HRI, IRL

Interactive reinforcement learning (IRL)

p
— —
The human provides a feedback or advice ;[ Robot ]V[ Human ]J—
\_

to guide the exploration of the robot.
St Rt
e ... more sample-efficiency. R
! e
e ... acoupling of the human and robot — Evironment ] |
l St+1 >

Four techniques:/Peter Stone, 2012]

1. Reward shaping:  R'(s,a) = R(s,a) + 8 *H(s,a)

2. Q-value augmentation:

Q (s,2) =Q(s,a) + S *H(s,a)

3. Action biasing: Q (s,a) =Q(s,a) + B*H(s,a) ,0nly during action selection

4. Control sharing: P(a =argmax[H (s,a)]) = min(f£,1) , Otherwise use the RL

agent’s action selection mechanism

Where, H(s,a) is the shaping function.
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2. Hierarchical Robot Learning

Hierarchical Robot Learning for Physical Collaboration between
Humans and Robots

* Goal: the robot learns to cooperate with the human for HRC task

* Two requirements for the desired robot behavior:
1. The human-robot joint action is able to accomplish the task toward the common goal.
2. The robot should adapt to the human operation capability.

* Hierarchical robot learning framework High-level motion learning

. . . . Environment
.... Inspired from Hierarchical reinforcement

learning (HRI). [Ghavamzadeh, 2017] J“"“;‘"“““ state Sy
- it | Reward 77,
;’/ Object of interest ‘\
High-level — Motion path of object state S, Human action:
a, Reward7: a,

]

o

o
Qo
-
o
(o S
=R
o
35

|
|
|
|
|
|
|
|
|
1

Low-level — The coordinate behavior



2. Hierarchical Robot Learning

A. High-level Motion Learning with Policy Search
1. Motion policy is represented by Dynamic Motor Primitive (DMP)

2. Optimize policy parameter by using policy search algorithm

POWER, Expectation-Maximization (EM)-based

:> policy search algorithm, preseted by [Jan peter,
_ IV oayi(x) 2009]
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Fig. 3: the return of each episode in high-level motion
learning.



2. Hierarchical Robot Learning

B. Low-level Interactive Learning for Active Contributions

1. Policy Evaluation with Function Approximation
2. Human action prediction

3. Prediction-based Action Selection Extended Kalman Eilter

GP:  p(Q.lx., 8,D) ~ N(g.|p(x.),X(x.)) Xk = Xi + Ki(Zx — H - X)
: 1 A IAr?
Update: Q(~“'.'-,ar) = Q(Sr:ar) + G[Esw.\',H [?‘(-‘Fr+1)]‘|‘ Xipr =A-Xg+w with - A = 8 (1) Alt
yargmin Esﬂ—sm [Q(SIH yar+1 )] —Q(st, a;)]
et Zrs1=H -Xg+v with H=[1 0 0
§ 04 A constraint optimization problem
2 02;
Y M a’ = argmin Q(s, ay)
= iy
@02
Yy ~— st. a, € |aa,—Ao,, aa,+Ac,
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Time-step

Fig. 4: the comparison of the measured position of human
hand by sensor (The solid line) and the predicted position
from EKF (the dotted line).



2. Hierarchical Robot Learning

wnN e

Contributions:

Motion path is learned as the common goal
Don’t assume the human as expert

Learn to coordinate with the human (human
move with a low speed )

State prediction improve the sample-
efficiency of RL.

Shortages:

The performance of POWER largely depends
on the value of learning parameter (...be
carefull)

the human is required to move slowly.

The computal complexty cause the delay of
control.

Still need human demonstration to obtain a
prior policy

Algorithm 1 Hirerachical Robot Learning with Human
Physical Interaction

Inputs: Initial motion policy parameter @y, Iteration num-
ber H 1 =H2
1. High-level Motion Learning:
Respect (for each episode)
Performing rollout using motion policy (@)
Collect all the states, actions and rewards {s,a,r}
Update motion policy parameter @ using Eq. []
2. Low-level Interactive Learning:
Repeat (for each episode)
Initialize state s and Q-value GP
Repeat (for each step of episode)
Predict human action using Eq. [I1]
Find optimal robot action a, using EqJf]
Collect observation s' and reward r,
Update the Q-value Q(s,a,) using Eq[12]
Set s+ &, a, + a;
Update Q-value GP by fitting to new Dataset D

(b)

Fig. 1: Human and robot collaboratively assemble a toy
which includes a support and a tray. The assembled task
includes two sub-tasks. Figure a) shows the first sub-task
where a robot transports the support to a predefined position.
Figure b) shows the second sub-task where a human and a
robot cooperate to transport a tray.
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3. Learning from human physical control

Interactive reinforcement learning with human physical control

* Goal: learning skills autonomously from the physical interaction with human

(Human cognitive action %k Thg sequer.1tial d_ecision-making problem with )
limited actions, like the game of GO

Human physical action % The continuous decision-making problem, like

\_ robot motor control )

* Two requirements for physical HRI:
1. Sample-efficient learning.
2. A ability to adapt to human behavior and learn from human physical control.

* Basicidea:
1. Using a virtual impedance model to describe the interactive behavior
between the human and the robot
2. Using Model Prediction Control (MPC) to assist the RL algorithm
3. Utilize human physical action in the RL algorithm



3. Learning from human physical control

A. Virtual Impedance Mode
the transition of states is built by using the virtual Cartesian impedance model:
Mi(t) + Di(t) = a, (t) + ay (1)
The states pace form of a discrete time system:
2(t +Ar) = foz(t) + frar(t) + fraan(t)

T
_|x _ L Atlysem o 0imxcm
Z(‘t)_ [XT},fz_ |:Im><m _NM—ICwaF_fh_ |:AfM_l

B. Model prediction control Qus =Ly + fIVessn
Qa,r = Ia,r +fj:er._r+l

use iteration LQR to implement MPC: d
Qxx,r = lxxyt ‘l_fr__rvxr.,.'-i—lf:r,r

T—1 Qaa,r = Iaa._.' + ﬁ{;%‘x.}+ lﬁ:,r
argmin Y I(x;,a,,an;) +1(xr) Qus = luxs + F1 Vies 1 fu
tly =t ¥

st xep1 = f(xe,arpsang ), Vi €1, T g =u+k +Ki(£ —x1) [Near-optimal
kf = _Q;:JI,.*QH and K = —Q;}JQM-‘; pOIICY

Iteration LQR recursively computes the first order Tyler expansion of the dynamic
model and the second order Tyler expansion of the action-value function



3. Learning from human physical control

B. Interactive learning with human physical action

1. Policy evaluation with function approximation

P(Qxlxe, B, D) ~ N(gu|p(x4), E(x4)) Algorithm 1 -HITL robot learning.
1: Requires: M and C: two impedance parameters.Q,. O-,
Q{S;,Hr) = Q(Snﬂr) + Cr[r(l‘—i— 1)]_|_ Ry and R»: the weights in the cost function of MPC. «
. and A: the learning rate and discount factor of Q-learning,
yargmin(Q(s,+1,a,4+1)) — Q(sr,ar)] initialize Q(s,a) arbitrarily.
dr+1 2: Perform MPC to find a near-optimal policy unul conver-

2. Reward shaping with human physical action _ £ence in a simulation environment.

3: foriterationk=1: K do
— 4:  Reset the robot state s = 5.
rs,a) =1r\Ss,a) — Th(S,a 0
( ’ ) t( ’ ) ’B h( ’ ) 5. fortimesteptr=1:T do
T T . 6 Receive current state sr.
Task-relevant reward: r(x,a,,a X—X X—Xg)+X Qo T
10Oz ) = (= 3a)” Q¥ =) 2 7: Find a near-optimal impedance action g(s,) in Eq
Human-relevant reward: fh( ) ( ) 5 Measure the force f; exerted by the human.
' ru(s,a) =M= T 9: Compute optimal robot action a* using E
g( )|| : P P p using Bq
10 Compute the reference velocity i, using Eq. 2]

,_
(=
N

Compute the reference joint velocity g, using Eqﬁ
Receive next state s, and reward r;.
13:  end for
. . 14: Update Q(s,a) using EqE and optimize GPs.
a, = argmin Q(s,ar,a) 15: end for

S.L. a,.e[g(r)—ah—én g(f)_“h+§r]

Combining the model-based planning and human teaching to Guide the exploration of the RL

Ly

3. Prediction-based action selection




3. Learning from human physical control

C. Experiments

Goal
position

Obstacle

Figure 1: Three consecutive snapshots shows a successful reaching task in
Gazebo simulator (a-c).
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Iterations
Figure 2: the final normalized distance from the end-effector to the goal posi-
fion of each iteration. “igure 7: the final normalized distance from the end-effector to the goal posi-

ion of each iteration.

Guide policy search method [Sergey Levine, 2013]
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4. Human-in-the-loop robot learning

Human-in-the-loop robot learning with Multi-modal interaction

* Goal: learning skills from Multi-modal interaction in Multi-task problem

* Problem Setting:
1. A complex task with a set of sub-task.

Robot learn to obtain a sub-task sequence to decompose the complex task.

2.
3. Robot learn the underlying policy to instance each select sub-task.
4.

Human may assist robot learning through human speech or human physical control.

The complex task is decomposed under the option framework [Sutton, 1999]

. v i
option o=<m,,1,, ﬁa > » High-level option policy [Option o Human
advice
Terminal a;,,
High-level = to find a optimal option sequence state sr
Switching The
< 01,02,...,0p > human

Low-level = optimize the underlying control » Low-level control policy Human
policy of the select option reward r(s.a) Robot| physical

TTp1,Tp2) =y TTon State . aﬁjrlf)n acfti';lrin

Environment [«




4. Human-in-the-loop robot learning

A. High-level Option learning with MTCS

Selection — Expansion — Simulation — Backpropagation \

.. Is a sequential MDP with limited actions
Possible nodes:

1. Pick a objecti ;
Place a object i Tree Defult

2 ) Policy Policy
3. Clear table
Y
4. Go home \_ A )
a. Without human advice b. With human advice

. . function: SelectAction(n, ¢)
using the Upper Confidence Bound (UCB
& PP ( ) if human advice h via SAR system then

policy if rand ;= feedbackProbability then
N 0 < advice
N, n' < None(s, o)
if n’ in childNode(n) then Return o
else addChildNode(n, n')
else

B. Low-level control policy learning 0 < argmin, { ;! +c ’”n—j”}
Return o
 |ssame to the above method introduced in section 3.

Vi In

UCB= — +c

Ll |
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5. Conclusion

1. to improve the sample-efficient of RL algorithm.

Model-based planning method.

Continuous setting € Dynamic programming, like iteration LQR
Discrete setting €< Monte Carlo Tree Search (MTCS)

Experience replay

reusing its past experiences from a experience memory to
speed up the convergence.

Human teaching Deep Q network (DQN)

Human provides feedback or advice to guide the exploration of the learning agent

Imitation learning / transfer learning

1. Represent and generalize the knowledge from human demonstration or other learning
method
2. Then directly give the samples or a prior policy to agent



5. Conclusion

2. to utilize human cognitive or physical action in RL algorithm.
* By using a shaping function.

Human’s control objective = a shaping function Q (s,a) =Q(s,a) + B*H(s,a)

* But how to learn from the continuous human control is still unknown?

SN[ | =
\ﬂ‘-" o f —
T Gmmmp L ’

1. By taking it as a noisy

2. Inverse reinforcement learning

Record human optimal operation to estimate
the value function for RL

3. By predicting the human state.

Human future state = human-specific goal

Markers at Markers at
Human Side Robot Side
(forZ,) (forZ,)

[Thobbi, 2016]




5. Future work

Prediction of human
nextState = f(currState, humanAction)

Predict & recognize: Human dynamic, human intension , human pose, human action,
human preference ....

Forecast 1 Second _' L Ground Truth Action |
I_ Before Action Starts I (not observed) I

Successful
Predictions

Deep reinforcement learning (EDRL)

Deep > a better approximation ability, like can process complex sensory input
RL = a trail-and-error process, can choose optimal action

Human-in-the-loop robot learning

1. How to achieve the co-adapt and co-learning between humans and robots
2. Avrisk-aware RL to keep the environment and human safety
3. Sample-efficient Learning from human physical control in continuous setting






