

Previous Work

Shuang Li

Tel: +49 1634014785

E-mail: sli@informatik.uni-hamburg.de

2.May 2017

Research Experience

Mechanical Engineering Anhui University of Technology

 $(2013.9\sim2015.6)$

- Path Planning for Unmanned Ground Vehicle and Modeling Simulation Based on Improved Genetic Algorithm
 - 1. Proper environmental modeling methods
 - 2. Efficient algorithms

Ŋ.

Genetic Algorithm: Simulate evolutionary processes

◆ An improved hybrid genetic algorithm based on the free space method

Free space method:

• The environmental modeling method always used in **not** complicated environment which objects place relatively concentrated.

Free space method (Maklink graph method)

The improved algorithm:

• The roughly shortest path in the connected graph could be searched by the Bellman-Ford Algorithm.

The distance of roughly shortest path is 275.8930

- The genetic algorithm of king-crossover mechanism could be used to optimize the path.
 - **✓** Add king-crossover mechanism
 - **→** Increase the convergence rate
 - **✓ Optimizing mutation operator**
 - **→** Maintain species diversity, and prevent premature convergence

м

Simulation:

Optima

The shortest path:265.7323 The average path:277.4022

The shortest path: 264.6521 The average path: 269.9015

The shortest path: 264.6521 The average path: 266.4557

M

Simulation:

- Optima
- Convergence rate

Convergence curves of optimal path obtained by the three algorithms

Convergence curves of average path obtained by the three algorithms TA

Simulation:

- Optima
- Convergence rate
- Stability

Fluctuation of optima in 100 experiments obtained by the three algorithms

◆ An improved genetic algorithm with elitist strategy based on the grid method

The grid method:

- The grid division
- Completely rasterization

◆ An improved genetic algorithm with elitist strategy based on the grid method

Five improved aspects:

- Generating the initial path
- Integrating the initial path
- Effectively choosing the elite individual
- Improving hybrid crossover operator
- Optimizing mutation operator

Simulation:

Optima

Genetic algorithm with elitist strategy

The shortest path: 42.6985 The average path: 52.1328 Path turning: 12 times Improved genetic algorithm with elitist strategy

The shortest path: 42.6985 The average path: 44.4777 Path turning: 7 times

М

Simulation:

- Optima
- Convergence rate

obtained by the two algorithms

obtained by the two algorithms

Simulation:

- Optima
- Convergence rate
- Stability

Fluctuation of optima in 100 experiments obtained by the two algorithms

Work Experience

Lecturer Fuyang Normal University

 $(2015.8\sim2017.2)$

- *Responsible for teaching of C Programming, Virtual Instrument, Computer Network, Robot Sensing and Control Technology and other courses;
- **&** Guided students to participate in the International Contest of Innovation (1rd Prize)
 - Work Title: EZ Controller

EZ Controller

M

Imitation

The executive robot arm automatically follows and imitates the movements of the control handle.

Ŋ

Imitation

The executive robot arm automatically follows and imitates the movements of control handle.

Variability

The executive end can transform different tools according to needs of users.

4

Stability

By using the self-stable pan-tilt by the gyroscope, this system is able to realize the stable operation of the monitor equipment, and capture high quality of images in real time.

Flexibility

It's flexible to perform plane movement through the belt on base.

EMSY CONTROL!

Future Plan

- Create useful model or multimodal manipulation skills operating by learning algorithms, based on multimodal data sources;
- **Big challenge:** how to fusion multimodal data sources greatly.

Thank You

Shuang Li

The Grid Division

Raw environment from sensor

Enlarged map

Environmental map in binary modality

Divided map by choosing proper grid size

Complete Rasterization

Complicated environment with multiple obstacles and scattered distribution

Complete Rasterization

Scattered obstacles

