

HAPTIC RECOGNITION BASED ON DEEP LEARNING

BY: DONG HAN

Outline

➢ Motivation

≻Haptic Dataset

≻Haptic data preprocessing

≻Haptic recognition network

➢Evaluation

➢ Motivation

>Haptic Dataset

>Haptic data preprocessing

>Haptic recognition network

➢Evaluation

- An intelligent robot should be able to get the unknown environment information by itself.
- Vision is not everything: dark, dusty, or blurry underwater environments, transparent and reflective objects
- Haptic perception based on multi-model haptic data from Biotac sensor.

>Motivation

≻Haptic Dataset

>Haptic data preprocessing

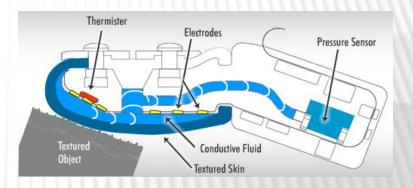
>Haptic recognition network

➢Evaluation

 Biotac sensor: a multi-functional finger sensor that can measure force. temperature and vibration.

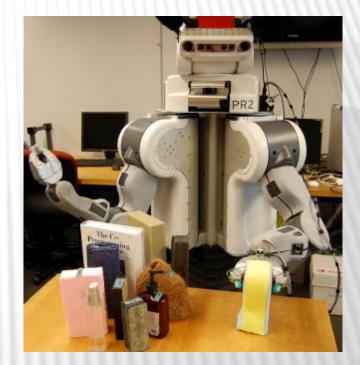
Output signals:

- PDC signal: pressure
- ◆ PAC signal: vibration
- ◆ TDC signal: absolute temperature
- ◆ TAC signal: temperature change rate
- Electrode signals; shape, position, three dimentional force





- Penn Haptic Adjective Corpus 2 (PHAC-2) created by GRASP Laboratory of University of Pennsylvania.
- The haptic data is measured by 2 Biotac sensors
- 60 objects are classified into 8 groups according to their materials.
- The toal data is 60-objects \times 2-fingers \times 10-



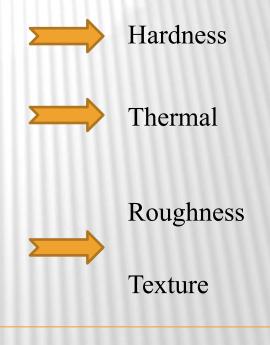
There are 4 exploratory procedures in each trial for getting multimodel haptic signals:

Squeeze: squeeze objects at a constant velocity to a specific Pdc value.

Hold: hold objects for ten seconds

Slow Slide: use a stronger contact with a downward speed of 1 cm/s

Fast Slide: use a lighter contact with a speed of 2.5 cm/s



>Motivation >Haptic Dataset ➢Haptic data preprocessing >Haptic recognition network ➢Evaluation

♦ Labels

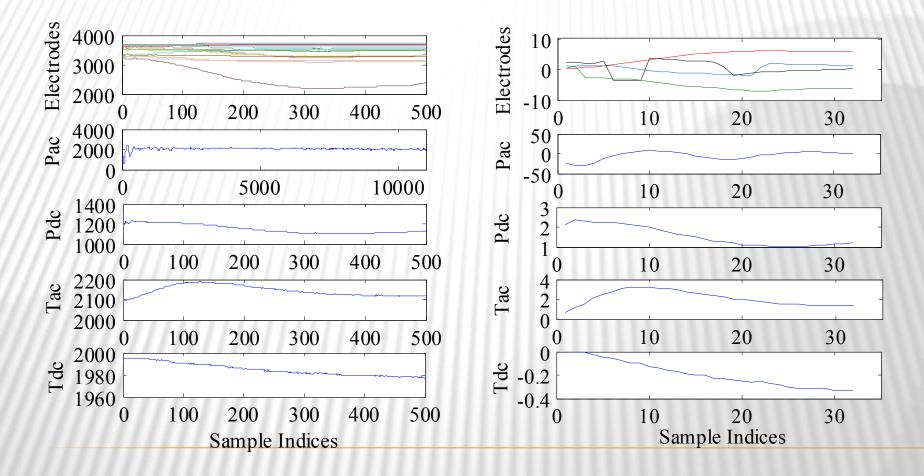
- ≻ Hardness: 6
- Thermal conductivity: 6
- Roughness: 4;
- > Texture: 3
- Objects: 6

Objects	Organic	Plastic	Paper	Fabric	Foam	Metal
Labels	0	1	2	3	4	5

56 objects

\blacklozenge Normalization

- ◆ PCA on Electrode Impedances: 19 dimensions ➡ 4 dimensions
- Subsampling/Compression
- Haptic data Augmentation: 56-objects \times 2-fingers \times 10-trials \times 5 times = 5600



Results of preprocessing

- ◆ Train/Test Splits: 46 objects for trainning, the other 10 objects for testing
- The number of each class in Test set is decided by the proportion of this class in the total objects.

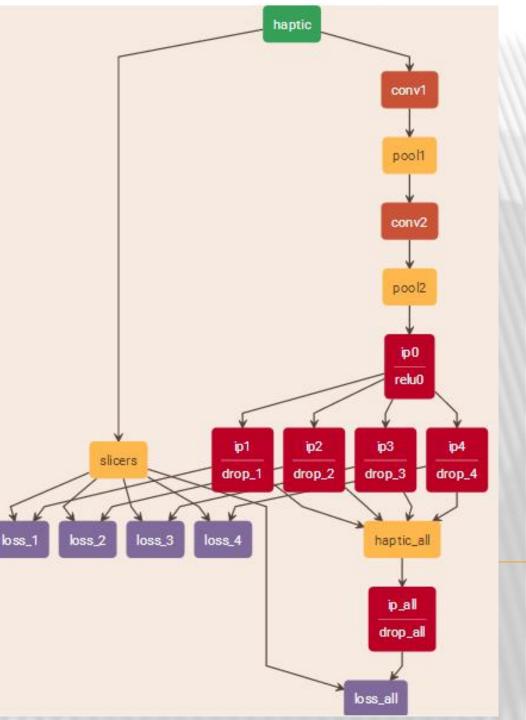
Test set

Class Number	Class Name	Object Name						
0	Organic	Layered Cork						
1	Plastic -	Plastic Case						
1	Plastic	Sawed Plastic						
2	Domon	Colorful Book						
2	Paper -	Cookie Box						
3	Fabric	Dishcloth						
///////////////////////////////////////		Blue Sponge						
4	Foam	Gray Foam						
[[]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]]	HHHH	Orange Sponge						
5	Metal	Aluminum Channel						

◆ All of the processed haptic data and labels are stored in HDF5 files

➢ Motivation >Haptic Dataset >Haptic data preprocessing ≻Haptic recognition network ➢Evaluation

- A open source deep learning framework: Caffe
- *slicers* layer divide the label matrix into five label vectors: hardness, thermal, roughness, texture, object.
- haptic_all layer combine the haptic features for recognizing objects
- drop_1, 2, 3, 4, all layer
 dropout is an effective method
 for solving overfitting problem.
- A network for multi-class and multi-label classification



Network trainning

Method: SGD(stochastic gradient descent)

◆ Learning rate:

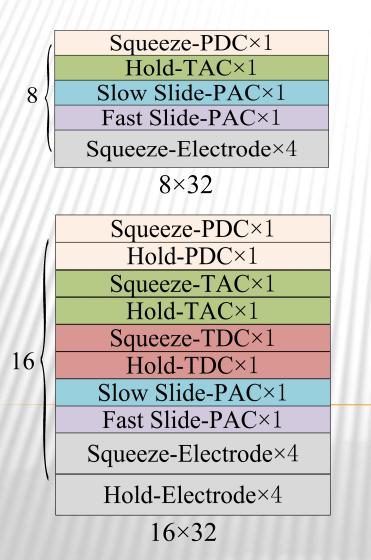
lr = base_lr * (1 + gamma * iter) ^ (-power) base_lr = 0.01; gamma =0.0001; power=0.75

weight_decay = 0.0005

- **•** momentum = 0.0005
- batch_size = 1000

Motivation
Haptic Dataset
Haptic data preprocessing
Haptic recognition network
Evaluation

haptic images



32

Squeeze-PAC×1; PDC×1; TAC×1; TDC×1

Hold-PAC×1; PDC×1; TAC×1; TDC×1

Slow Slide-PAC×1; PDC×1; TAC×1; TDC×1

Fast Slide-PAC×1; PDC×1; TAC×1; TDC×1

Squeeze-Electrode×4

Hold-Electrode×4

Slow Slide-Electrode×4

Fast Slide-Electrode×4

32×32; 32×16; 32×8

(PAC+PDC+TAC+TDC+4×Elec trode)×4 = 32

rest results for unterent haptic images								
	8×32	16×32	32×32	32×16	32×8			
Hardness	58.6	58.8	73.7	55.9	57.0			
Thermal Conductivity	62.6	63.5	67.7	68.3	67.0			
Roughness	53.8	68.3	69.9	68.9	69.4			
Texture	53.5	68.8	77.5	75.6	67.4			
Object Recognition	60.5	69.0	74.8	67.6	67.2			
Average	57.8	65.7	72.7	67.3	65.6			

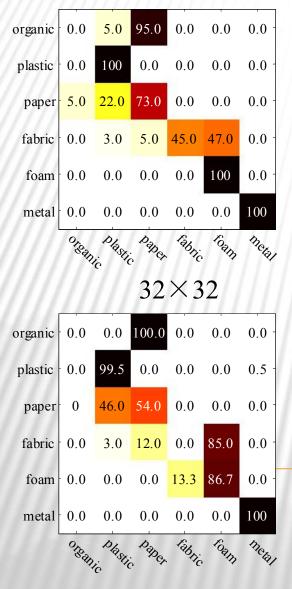
Test results for different haptic images

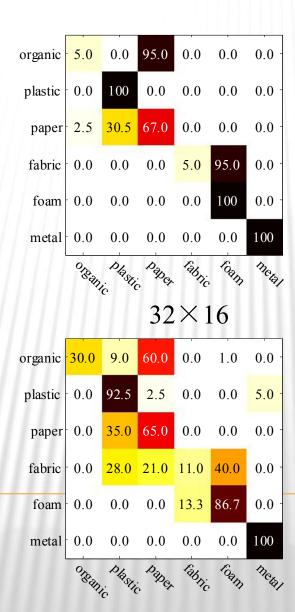
◆F1-sore is used to evaluate the performance of haptic network

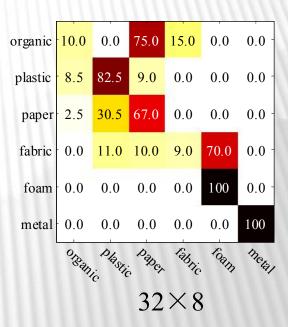
More haptic imformation can have better performance on haptic recognition if there are enough training data.

UH Iniversität Hamburg

DER FORSCHUNG | DER LEHRE | DER BILDUNG







 8×32

 16×32

- Organic objects are easily mistaken for paper objects
- Fabric objects are easily mistaken for foam objects

- Objects in organic class and in fabric class have a small number.
 - The organic object in test set is similar with some paper objects (layered cork &fiber board); The fabric object in test set is similar with some foam objects (dishcloth&shelf liner)

organic	0.0	5.0	95.0	0.0	0.0	0.0
plastic	0.0	100	0.0	0.0	0.0	0.0 -
paper	5.0	22.0	73.0	0.0	0.0	0.0 -
fabric	0.0	3.0	5.0	45.0	47.0	0.0 -
foam	0.0	0.0	0.0	0.0	100	0.0 -
metal	0.0	0.0	0.0	0.0	0.0	100
	orean	Dlastic	Daper	fabric	foam	metal

DER FORSCHUNG | DER LEHRE | DER BILDUNG

/////	R	oughnes	S		Texture		Objec	nition	
PAC	Precision	Recall	F1-score	Precision	Recall	F1-score	Precision	Recall	F1-score
////	68.8	67.3	67.4	62.1	61.8	61.4	64.5	67.5	64.2

		Hardness		Object Recognition			
PDC Pre	ecision	Recall	F1-score	Precision	Recall	F1-score	
FDC	48.6	51.1	46.9	50.2	55.1	51.4	

///////	Hardness			Object Recognition		
Electrode	Precision	Recall	F1-score	Precision	Recall	F1-score
	51.5	51.1	45.6	68.2	71.9	64.5

	Therm	al Conduct	tivity	Object Recognition			
TDC	Precision	Recall	F1-score	Precision	Recall	F1-score	
IDC	52.5	61.7	56.4	64.6	63.3	59.3	

1111111	Therm	al Conduct	tivity	Obje	ect Recogn	ition
TAC	Precision	Recall	F1-score	Precision	Recall	F1-score
IAC	64.0	66.4	64.0	68.3	69.5	68.6

For object recognition

- The F1-score of TAC signals is the highest, because the objects are classified according to materials
- The f1-score of PDC signal is smallest, because the objects in one class also have different hardness

For feature extraction

- TAC signals have a better performance on getting thermal conductivity than TDC signals
- PDC signals have better performance on hardness recognition than Electrode signals

The performance of multi-model signal fusion is better than that of single signals

How can we further improve the performance of haptic recognition.

◆use a more complex deep learning network

♦ increase training data

provide more reasonable labels for each haptic feature and object

➢ Motivation >Haptic Dataset >Haptic data preprocessing >Haptic recognition network >Evaluation

Main References

Gao, Yang, et al. "Deep Learning for Tactile Understanding From Visual and Haptic Data." Computer Science (2015).

- Chu, Vivian, et al. "Robotic learning of haptic adjectives through physical interaction." Robotics & Autonomous Systems 63.P3(2015):279-292.
- Chu, V, et al. "Using robotic exploratory procedures to learn the meaning of haptic adjectives." IEEE International Conference on Robotics and Automation IEEE, 2013:3048-3055.

Questions? or Suggestions?

