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Related Work
Sensor Gloves

gesture detection [5] [19] [8]

sign language detection [8] [13]

music generation [14]

medical applications [3]

→ overview at [1]

5 / 47
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Related Work
Alternative Keyboard Inputs

buttons on glove [12]
braille gloves [4]
“The Learning Keyboard” [7]→ Kinect

Figure 1: The Keyglove - a wearable, wireless, open-source input device

https://vimeo.com/23269969
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Related Work
Commercial Products

Gest [9] ($ 199, 988 on Kickstarter)

Project Virtual Keyboard [16]
Hi5 VR Glove [10]→ VR Gaming

https://gest.co/

Figure 2: Gest general purpose interaction
wearable

http://hi5vrglove.com/

Figure 3: Noitom Hi5 VR Glove

7 / 47

https://gest.co/
http://hi5vrglove.com/


Introduction System design Machine Learning Experiments Demo Conclusion

Related Work
In Research

no research project combines

sensor + keyboard data→ machine learning
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Project Goal

Of course we won’t build a fully working keyboard in 2 bachelor theses.

Goal

Design a system for recording characteristic hand movements of typing
and the corresponding input.

Define an approach for utilizing machine learning to map the recorded
data back to the keyboard input.

Evaluate the quality of such mapping and discuss whether this principle
could be turned into a working keyboard alternative.
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Desired System Properties

utilizes machine learning
detects characteristic values

fast (goal 100Hz)
accurate
independent of pose

non-obstructive
flexible
wireless
light

software suitable for fast prototyping

cheap
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Sensors
Possible Choices

Flex sensors

https://www.flickr.com/photos/
indiamos/3060497602

Visual system

https://de.wikipedia.org/wiki/
Kinect#/media/File:
Xbox-360-Kinect-Standalone.png

IMUs

https:
//organicmonkeymotion.wordpress.
com/category/propeller/

Figure 4: Possible types of sensors; left resistive flex sensors

, center Kinect for Xbox 360, right
InvenSense MPU-9150 IMU
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Sensors
Inertial Measurement Units (IMUs)

Accelerometer Gyroscope Magnetometer

Sensor Fusion

Quaternion

14 bit
±2..16g

10−3g/LSB
16 bit

±125..2000◦s−1 heading ±2.5◦

Figure 5: Sensor Fusion Overview
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Sensors
Wearable BNO055 Nano Board

https://www.tindie.com/products/onehorse/
wearable-bno055-nano-board/

Figure 6: Wearable BNO055 Nano
Board

32 bit System-in-Package

tiny (10 mm × 10 mm)

easy to use

good performance (~100 Hz)

however...

ca. 24e each

ships from USA

gyro clipping problems
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Microprocessor
Adafruit Feather M0 WiFi

very small and lightweight (6.1g)

on-board WiFi

6 SERCOMs (SPI/I2C/UART)

Arduino® compatible

256KB FLASH, 32KB SRAM

LiPo charger

however...

no EEPROM

ca. 40e each

https://www.adafruit.com/product/3010

Figure 7: Adafruit Feather M0 WiFi - ATSAMD21 +
ATWINC1500 product image
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I2C Bus
Requirements

6 IMUs

2 addresses
IMU

= 3 buses

Primary pads Alternative pads
SERCOM 0 1 2 3 0 1 2 3 Used by

0 3 1 0 A3 A4 9 Serial1
1 11 13 10 12
2 22 5 3 1 0
3 20 21 6* 11 13 10 12 Default I2C
4 22 23* 24* A1 A2 5 SPI
5 A5* 6 20 21 Debug Port

* need to be configured as SERCOM alt

Table 1: Available SERCOM pin pads on Adafruit Feather M0 WiFi
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I2C Bus
Arduino Setup

#include <Wire.h>
#include <wiring_private.h>

TwoWire wire0(&sercom0, A3, A4);
TwoWire wire1(&sercom3, 11, 13);
TwoWire wire2(&sercom5, 20, 21);

void setup() {
wire0.begin(); wire0.setClock(400000L);
wire1.begin(); wire1.setClock(400000L);
wire2.begin(); wire2.setClock(400000L);
delay(100);

pinPeripheral(A3, PIO_SERCOM_ALT); // SERCOM0.0 (alt)
pinPeripheral(A4, PIO_SERCOM_ALT); // SERCOM0.1 (alt)
pinPeripheral(11, PIO_SERCOM_ALT); // SERCOM3.0 (alt)
pinPeripheral(13, PIO_SERCOM_ALT); // SERCOM3.1 (alt)
pinPeripheral(20, PIO_SERCOM_ALT); // SERCOM5.0 (alt)
pinPeripheral(21, PIO_SERCOM_ALT); // SERCOM5.1 (alt)

}

18 / 47
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Glove↔ PC Connection
WiFi

// Setup
WiFi.setPins(8, 7, 4, 2);
WiFi.begin();

// Scan for networks (optional)
uint8_t ssidCount = WiFi.scanNetworks();
for (uint8_t i = 0; i < ssidCount; i++) {

printf("- %s\n", WiFi.SSID(i));
}

// Connect to WPA2 network
uint8_t status = WiFi.begin(MY_SSID, MY_PASSPHRASE);
while (status != WL_CONNECTED) {

delay(500);
status = WiFi.status();

}

// Send data via UDP
WiFiUDP wifiUdp;
wifiUdp.begin(8080);
wifiUdp.beginPacket(TARGET_IP, TARGET_PORT);
wifiUdp.write(buffer, length);
wifiUdp.endPacket();

Capabilities

WEP & WPA2

Scan networks

UDP, TCP, SSL

HTTP Client

HTTP Server

20 / 47



Introduction System design Machine Learning Experiments Demo Conclusion

System design
Other Considerations

serial protocol for data transmission

attachment to the hand

use ROS for recording & data analysis
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Neural Networks
Strengths and Weaknesses [18]

Pros

general-purpose

many variations

fast to apply once learned

able to detect complex
relationships

Cons

requires large dataset

blackbox1, difficult to
“understand”

slow to learn

can overfit

1there are some rule-extraction algorithms [17]
23 / 47
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Recurrent Neural Networks

input hidden output

Figure 8: Simplified Recurrent Network
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Problems
Vanishing Gradient Problem (Hochreiter [11])

Problem

Deep networks require a lot of training

during backpropagation, error is lost with each layer

first layers receive slowest updates

unrolled RNNs are very deep
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Problems
Imbalanced Data

Problem

Only 2% of our samples are keystrokes (positive class)

Possible solutions [2]

gather lots of data and train a lot

resampling

penalize

generate synthetic data
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Preprocessing and Sampling

Quaternions

Relative to base

Timesteps/
Interpolate

Pick samples
at key strokes

Extract angles
for visualization

Figure 9: Visualization of relative quaternion rotations, idle pose
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Preprocessing and Sampling

Quaternions

Relative to base

Timesteps/
Interpolate

Pick samples
at key strokes

Extract angles
for visualization

Figure 10: Visualization of relative quaternion rotations, index finger
bent
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Preprocessing and Sampling

Quaternions

Relative to base

Timesteps/
Interpolate

Pick samples
at key strokes

Extract angles
for visualization

fixed timestep

(25 Hz)

time

value

IMU 1 IMU 2

Figure 11: Interpolation of the IMU data (simplified)
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Preprocessing and Sampling

Quaternions

Relative to base

Timesteps/
Interpolate

Pick samples
at key strokes

Extract angles
for visualization

Figure 12: Multiple repetitions of the N key stroke, overlayed at the
moment of pressing the key (center line); value plotted is extracted
relative pitch angle of right index finger.
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Preprocessing and Sampling
Real Preprocessed Data G H J K L ; ' \

B N M , . / ↑

T Y U I O P [ ]

5 6 7 8 9 0 - = ←

� Alt Meta Menu Ctrl

VC

F

R

4

� Thumb

Index

Middle
Ring

Pinky

Figure 14: Multiple repetitions of N (left) and H (right) key strokes, overlayed at the moment of
pressing the key (center line); value plotted is extracted relative pitch (top)/yaw (bottom) angles of right
index finger. 28 / 47
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Convolutional Neural Networks
Convolution and Pooling

5 2 3 8
0 1 2 6
4 8 5 4
1 7 1 7

0 1 0
0 1 0
0 1 0

Filter 0

0 0 1
0 1 0
1 0 0

Filter N

5 3 5 14
9 11 10 18
5 16 8 17
5 15 6 11

Convolution 0

5 2 4 10
2 8 18 11
5 11 18 5
9 12 5 7

Convolution N

11 18
16 17

Pool 0

8 18
12 18

Pool N

...
...

Figure 15: Feature Extraction with CNN
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Convolutional Neural Networks
Our Implementation

1 @
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Experiments

1 Introduction

2 System design

3 Machine Learning

4 Experiments
Phase 0 – Pipeline Setup
Phase 1 – Slow Single Finger
Phase 2 – Slow Multiple Fingers
Phase 3 – Fast Typing

5 Demo

6 Conclusion
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Phase 0 – Pipeline Setup

imu_ids: [0, 1, 2, 3, 4, 5]
key_codes: [21, 22, 23, 34, ...]
sequence_length: 16

epochs: 0 //infinite
learning_rate: 0.002
batch_size: 100
sampling_rate: 25

network_type: cnn2d
cost_function: mse

convolution_n_filters: 50
convolution_filter_size: [3, 3]
convolution_n_pairs: 2
convolution_arr_dense: [10]

Figure 16: Example of a configuration file (truncated)

easily adjustable

repeatable experiments
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Phase 1 – Slow Single Finger
Overview G H J K L ; ' \

B N M , . / ↑
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� Thumb
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Pinky

1 finger, 2 keys

Goals:

detect keystrokes, ignore idle pose

distinguish between close keys

evaluate the configuration of the CNN
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Phase 1 – Slow Single Finger
Accuracy and Cost Function G H J K L ; ' \
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Figure 17: Test results in the first 1600 epochs of learning phase 2
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Phase 2 – Slow Multiple Finger
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Phase 2 – Slow Multiple Fingers
Accuracy and Cost Function G H J K L ; ' \
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Figure 20: Performance metrics of phase 1, including per key precision and recall
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