Prototype for a virtual keyboard based on IMUs and machine learning

Paul Bienkowski & Carolin Konietzny

TAMS, Fachbereich Informatik, Universität Hamburg

2017-05-16

	System design			Conclusion
000000	00000000000	00000000	000000	000

Contents

Introduction 1

2 System design

3 Machine Learning

4 Experiments

Demo 5

Introduction	System design			Conclusion
000000	00000000000	00000000	000000	000

Introduction

1 Introduction

- Motivation
- Vision
- Related Work
- Project Goal

2 System design

- 3 Machine Learning
- 4 Experiments

5 Demo

Introduction	System design			Conclusion
000000	00000000000	00000000	000000	000

Traditional Keyboards

Pros

- easy to learn
- precise
- universal
- cheap

Introduction	System design			Conclusion
000000	00000000000	00000000	000000	000

Traditional Keyboards

Pros

- easy to learn
- precise
- universal
- cheap

Cons

- poor ergonomics
- depends on motor abilities
- not adjustable to task → "shortcuts"

Introduction	System design			Conclusion
000000	00000000000	00000000	000000	000

Traditional Keyboards

Pros

- easy to learn
- precise
- universal
- cheap

Cons

- poor ergonomics
- depends on motor abilities
- not adjustable to task → "shortcuts"

Introduction S	system design	Machine Learning		Conclusion
●000000 0	00000000000	00000000	000000	000

Traditional Keyboards

Pros

- easy to learn
- precise
- universal
- cheap

Alternatives

- voice recognition
- handwriting recognition
- visual methods (eye tracking)

Cons

- poor ergonomics
- depends on motor abilities
- not adjustable to task → "shortcuts"

Introduction	System design	Experiments 0000000	Conclusion
Vision			

1 record finger movements and input while typing

Introduction	System design	Experiments 0000000	Conclusion
Vision			

- 1 record finger movements and input while typing
- 2 use machine learning for input prediction

Introduction	System design	Experiments 0000000	Conclusion

Vision

- 1 record finger movements and input while typing
- 2 use machine learning for input prediction
- 3 remove keyboard

Introduction	System design	Experiments 0000000	Conclusion

Vision

- 1 record finger movements and input while typing
- 2 use machine learning for input prediction
- 3 remove keyboard
- 4 type everywhere

Introduction	System design	Experiments 0000000	Conclusion

Related Work

Sensor Gloves

- gesture detection [5] [19] [8]
- sign language detection [8] [13]
- music generation [14]
- medical applications [3]
- \rightarrow overview at [1]

Related Work

Alternative Keyboard Inputs

- buttons on glove [12]
- braille gloves [4]
- "The Learning Keyboard" [7] \rightarrow Kinect

Figure 1: The Keyglove - a wearable, wireless, open-source input device

https://vimeo.com/23269969

Introduction	System design			Conclusion
000000	00000000000	00000000	000000	000

Related Work

Commercial Products

- Gest [9] (\$ 199, 988 on Kickstarter)
- Project Virtual Keyboard [16]
- Hi5 VR Glove [10] → VR Gaming

https://gest.co/

Figure 2: Gest general purpose interaction wearable

http://hi5vrglove.com/ Figure 3: Noitom Hi5 VR Glove Introduction 0000000

Related Work

In Research

no research project combines

sensor + keyboard data → machine learning

Introduction	System design	Experiments 0000000	Conclusion

Project Goal

Of course we won't build a fully working keyboard in 2 bachelor theses.

Introduction	System design	Experiments 0000000	Conclusion

Project Goal

Of course we won't build a fully working keyboard in 2 bachelor theses.

Goal

Design a system for recording characteristic hand movements of typing and the corresponding input.

Define an approach for utilizing machine learning to map the recorded data back to the keyboard input.

Evaluate the quality of such mapping and discuss whether this principle could be turned into a working keyboard alternative.

	System design			Conclusion
000000	00000000000	00000000	000000	000

System design

1 Introduction

2 System design

- Desired System Properties
- Sensors
- Microprocessor
- Architecture

3 Machine Learning

4 Experiments

5 Demo

ntroduction **System design** Machine Learning Experiments Demo 0000000 ●0000000000 00000000 0000000

Desired System Properties

- utilizes machine learning
- detects characteristic values
 - fast (goal 100Hz)
 - accurate
 - independent of pose
- non-obstructive
 - flexible
 - wireless
 - light
- software suitable for fast prototyping
- cheap

System design		Conclusion
0 000 000000		

Possible Choices

Flex sensors

https://www.flickr.com/photos/ indiamos/3060497602

Figure 4: Possible types of sensors; left resistive flex sensors

System design ○●○○○○○○○○○	Experiments 0000000	Conclusion

Possible Choices

Flex sensors

Visual system

https://www.flickr.com/photos/ indiamos/3060497602

https://de.wikipedia.org/wiki/ Kinect#/media/File: Xbox-360-Kinect-Standalone.png

Figure 4: Possible types of sensors; left resistive flex sensors, center Kinect for Xbox 360

System design ○●○○○○○○○○○○	Experiments 0000000	Conclusion

Possible Choices

Flex sensors

Visual system

IMUs

https://www.flickr.com/photos/ indiamos/3060497602

https://de.wikipedia.org/wiki/ Kinect#/media/File: Xbox-360-Kinect-Standalone.png https: //organicmonkeymotion.wordpress. com/category/propeller/

Figure 4: Possible types of sensors; *left* resistive flex sensors, *center* Kinect for Xbox 360, *right* InvenSense MPU-9150 IMU

Introduction	System design ○○●○○○○○○○○○	Experiments 0000000	Conclusion

Inertial Measurement Units (IMUs)

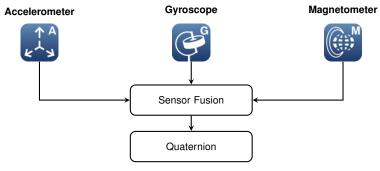
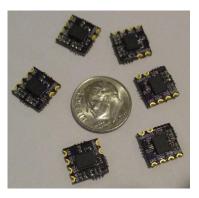


Figure 5: Sensor Fusion Overview

System design ○○○●○○○○○○○	Experiments 0000000	Conclusion

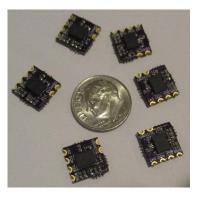
Sensors Wearable BNO055 Nano Board



https://www.tindie.com/products/onehorse/ wearable-bno055-nano-board/

Figure 6: Wearable BNO055 Nano Board

Sensors Wearable BNO055 Nano Board

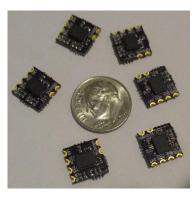


https://www.tindie.com/products/onehorse/ wearable-bno055-nano-board/

Figure 6: Wearable BNO055 Nano Board

- 32 bit System-in-Package
- tiny (10 mm × 10 mm)
- easy to use
- good performance (~100 Hz)

Sensors Wearable BNO055 Nano Board



https://www.tindie.com/products/onehorse/ wearable-bno055-nano-board/

Figure 6: Wearable BNO055 Nano Board

- 32 bit System-in-Package
- tiny (10 mm × 10 mm)
- easy to use
- good performance (~100 Hz)

however...

- ca. 24 € each
- ships from USA
- gyro clipping problems

Introduction	System design ○○○○●○○○○○○○	Experiments 0000000	Conclusion

Inertial Measurement Units (IMUs)

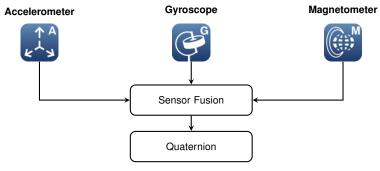


Figure 5: Sensor Fusion Overview

Introduction	System design	Experiments 0000000	Conclusion

Inertial Measurement Units (IMUs)

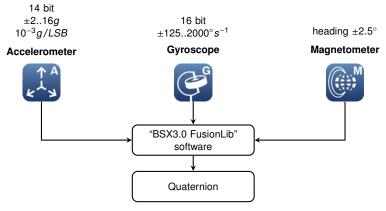
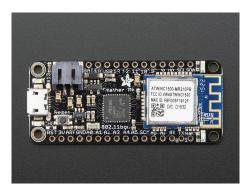


Figure 5: Sensor Fusion Overview

Microprocessor

Adafruit Feather M0 WiFi

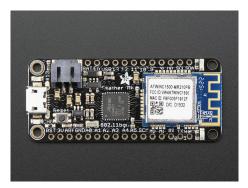


https://www.adafruit.com/product/3010

Microprocessor

Adafruit Feather M0 WiFi

- very small and lightweight (6.1g)
- on-board WiFi
- 6 SERCOMs (SPI/I2C/UART)



https://www.adafruit.com/product/3010

Microprocessor

Adafruit Feather M0 WiFi

- very small and lightweight (6.1g)
- on-board WiFi
- 6 SERCOMs (SPI/I2C/UART)
- Arduino[®] compatible
- 256KB FLASH, 32KB SRAM
- LiPo charger

https://www.adafruit.com/product/3010

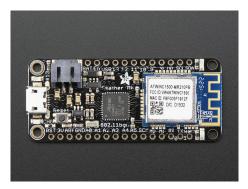
Microprocessor

Adafruit Feather M0 WiFi

- very small and lightweight (6.1g)
- on-board WiFi
- 6 SERCOMs (SPI/I2C/UART)
- Arduino[®] compatible
- 256KB FLASH, 32KB SRAM
- LiPo charger

however...

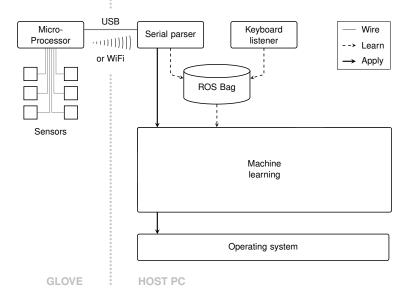
- no EEPROM
- aca. 40€each



https://www.adafruit.com/product/3010

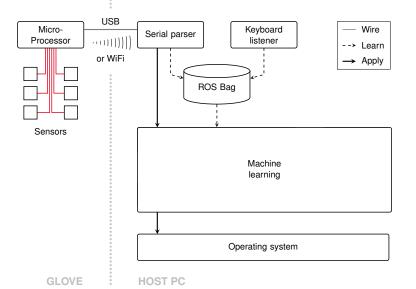
Introduction System des	sign	Machine Learning		Demo	Conclusion
0000000 000000	00000	00000000	000000		000

Architecture



0000000 0000000 000000 000000 000000 0000		System design			Conclusion
	0000000	000000000000	00000000	000000	000

Architecture



Introduction	System design ○○○○○○●○○○○	Machine Learning	Experiments 0000000	Demo	Conclusion
I2C Bus					
Requirements	3				

 $\frac{6 \text{ IMUs}}{2 \frac{\text{addresses}}{\text{IMU}}} = 3 \text{ buses}$

Introduction	System design ○○○○○○●○○○○	Experiments 0000000	Conclusion

I2C Bus Requirements

 $\frac{6 \text{ IMUs}}{2 \frac{\text{addresses}}{\text{IMU}}} = 3 \text{ buses}$

	Primary pads			Alternative pads					
SERCOM	0	1	2	3	0	1	2	3	Used by
0	4	3	1	0	A3	A4	8	9	Serial1
1	11	13	10	12					
2	22		2	5	4	3	1	0	
3	20	21	6*	7*	11	13	10	12	Default I2C
4	22		23*	24*	A1	A2	2	5	SPI
5	A5*		6	7	20	21			Debug Port

need to be configured as SERCOM alt

Table 1: Available SERCOM pin pads on Adafruit Feather M0 WiFi

Introduction	System design	Experiments 0000000	Conclusion

I2C Bus Requirements

 $\frac{6 \text{ IMUs}}{2 \frac{\text{addresses}}{\text{IMU}}} = 3 \text{ buses}$

	F	rimai	ry pad	s	Alt	ernat	ive pa	ads	
SERCOM	0	1	2	3	0	1	2	3	Used by
0		3	1	0	A3	A4		9	Serial1
1	11	13	10	12					
2	22			5		3	1	0	
3	20	21	6*		11	13	10	12	Default I2C
4	22		23*	24*	A1	A2		5	SPI
5	A5*		6	oonfiguu	20	21			Debug Port

need to be configured as SERCOM alt

Table 1: Available SERCOM pin pads on Adafruit Feather M0 WiFi

Introduction	System design	Experiments 0000000	Conclusion

I2C Bus Requirements

 $\frac{6 \text{ IMUs}}{2 \frac{\text{addresses}}{\text{IMU}}} = 3 \text{ buses}$

	F	rimai	ry pad	S	Alt	ernati	ive pa	ads	
SERCOM	0	1	2	3	0	1	2	3	Used by
0		3	1	0	A3	A4		9	Serial1
1	11	13	10	12					
2	22			5		3	1	0	
3	20	21	6*		11	13	10	12	Default I2C
4	22		23*	24*	A1	A2		5	SPI
5	A5*		6	configur	20	21			Debug Port

need to be configured as SERCOM alt

Table 1: Available SERCOM pin pads on Adafruit Feather M0 WiFi

System design ○○○○○○○●○○○	Experiments 0000000	Conclusion

I2C Bus Arduino Setup

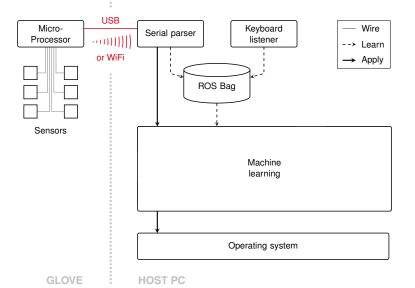
}

```
#include <Wire.h>
#include <wiring_private.h>
TwoWire wire0(&sercom0, A3, A4);
TwoWire wire1(&sercom3, 11, 13);
TwoWire wire2(&sercom5, 20, 21):
void setup() {
    wire0.begin(): wire0.setClock(400000L);
    wire1.begin(); wire1.setClock(40000L);
    wire2.begin(): wire2.setClock(400000L);
    delay(100);
    pinPeripheral(A3. PIO SERCOM ALT): // SERCOM0.0 (alt)
    pinPeripheral(A4, PIO_SERCOM_ALT); // SERCOM0.1 (alt)
    pinPeripheral(11. PIO SERCOM ALT): // SERCOM3.0 (alt)
    pinPeripheral(13, PIO_SERCOM_ALT); // SERCOM3.1 (alt)
    pinPeripheral(20, PIO_SERCOM_ALT); // SERCOM5.0 (alt)
```

pinPeripheral(21. PIO SERCOM ALT): // SERCOM5.1 (alt)

	System design			Conclusion
000000	000000000000	00000000	000000	000

Glove ↔ PC connection



Glove ↔ PC Connection

// Setup
WiFi.setPins(8, 7, 4, 2);
WiFi.begin();

```
// Scan for networks (optional)
uint8_t ssidCount = WiFi.scanNetworks();
for (uint8_t i = 0; i < ssidCount; i++) {
    printf("- %s\n", WiFi.SSID(i));
}</pre>
```

```
// Connect to WPA2 network
uint&_t status = WiFi.begin(MY_SSID, MY_PASSPHRASE);
while (status != WL_CONNECTED) {
    delay(500);
    status = WiFi.status();
}
```

```
// Send data via UDP
WiFiUDP wifiUdp;
wifiUdp.begin(8080);
wifiUdp.beginPacket(TARGET_IP, TARGET_PORT);
wifiUdp.write(buffer, length);
wifiUdp.endPacket();
```

Capabilities

- WEP & WPA2
- Scan networks
- UDP, TCP, SSL
- HTTP Client
- HTTP Server

System design ○○○○○○○○○○○	Experiments 0000000	Conclusion

System design

Other Considerations

- serial protocol for data transmission
- attachment to the hand
- use ROS for recording & data analysis

			design Machine	e Learning Expe			
0000000 0000000000 0000000 0000000 00000	00000	00 00000	00000 000000	000 000	00000	(000

Machine Learning

1 Introduction

2 System design

3 Machine Learning

- Introduction
- Neural Networks
- Recurrent Neural Networks
- Problems
- Convolutional Neural Networks
- Evaluating Predictions

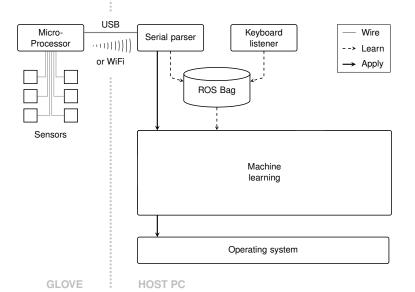
4 Experiments

5 Demo

 Introduction
 System design
 Machine Learning
 Experiments
 Demo
 Conclusion

 0000000
 000000000
 00000000
 0000000
 000
 000

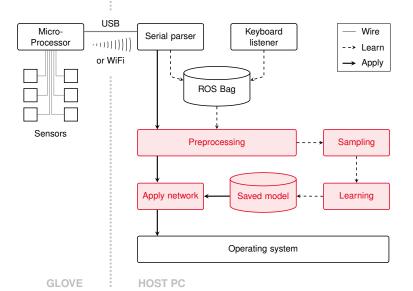
Machine Learning



 Introduction
 System design
 Machine Learning
 Experiments
 Demo
 Conclusion

 0000000
 000000000
 00000000
 0000000
 000
 000

Machine Learning



 Introduction
 System design
 Machine Learning
 Experiments
 Demo
 Conclusion

 0000000
 00000000
 0000000
 0000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000</td

Neural Networks

Strengths and Weaknesses [18]

Pros

- general-purpose
- many variations
- fast to apply once learned
- able to detect complex relationships

Cons

- requires large dataset
- blackbox¹, difficult to "understand"
- slow to learn
- can overfit

¹there are some rule-extraction algorithms [17]

 Introduction
 System design
 Machine Learning
 Experiments
 Demo
 Conclusion

 0000000
 00000000
 0000000
 0000000
 000
 000

Recurrent Neural Networks

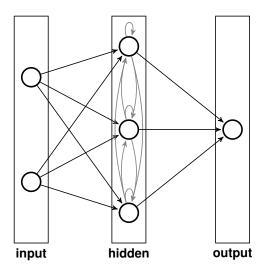


Figure 8: Simplified Recurrent Network

		System design	Machine Learning		Conclusion
000 000000 0000000 0000000 0000000 00000	000000	00000000000	000 000 00	000000	000

Vanishing Gradient Problem (Hochreiter [11])

Problem

Deep networks require a lot of training

		System design	Machine Learning		Conclusion
000 000000 0000000 0000000 0000000 00000	000000	00000000000	000 000 00	000000	000

Vanishing Gradient Problem (Hochreiter [11])

Problem

Deep networks require a lot of training

- during backpropagation, error is lost with each layer
- first layers receive slowest updates
- unrolled RNNs are very deep

System design	Machine Learning	Experiments 0000000	Conclusion

Imbalanced Data

Problem

Only 2% of our samples are keystrokes (positive class)

System design	Machine Learning	Experiments 0000000	Conclusion

Imbalanced Data

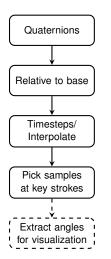
Problem

Only 2% of our samples are keystrokes (positive class)

Possible solutions [2]

- gather lots of data and train a lot
- resampling
- penalize
- generate synthetic data

000 000000 0000000 000000 000000 000000		System design	Machine Learning		Conclusion
	0000000	00000000000	00000000	0000000	000



 Introduction
 System design
 Machine Learning
 Experiments
 Demo
 Conclusion

 0000000
 000000000
 00000000
 0000000
 000
 000

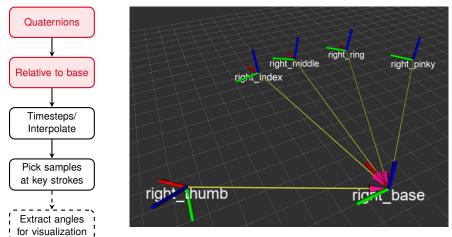


Figure 9: Visualization of relative quaternion rotations, idle pose

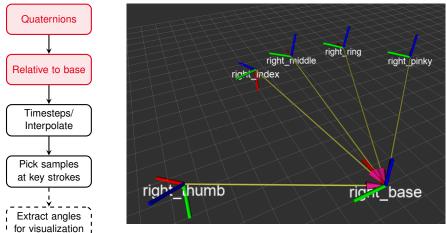
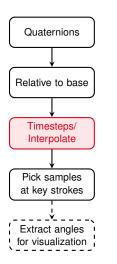


Figure 10: Visualization of relative quaternion rotations, index finger bent

	System design	Machine Learning		Conclusion
000000	00000000000	00000000	000000	000



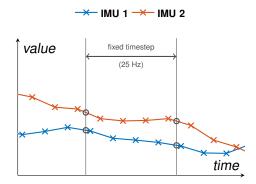
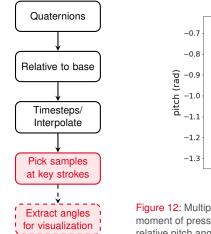


Figure 11: Interpolation of the IMU data (simplified)

	no Concli	
0000000 000000000 0000000 0000000	000	<u> </u>

Preprocessing and Sampling



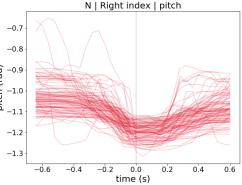


Figure 12: Multiple repetitions of the N key stroke, overlayed at the moment of pressing the key (center line); value plotted is extracted relative pitch angle of right index finger.

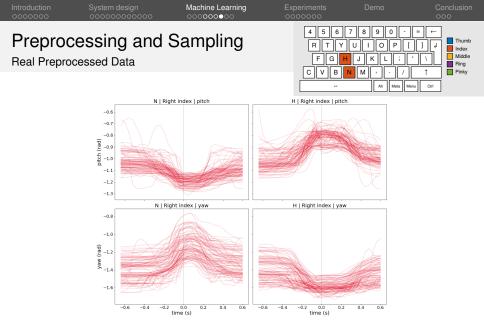


Figure 14: Multiple repetitions of N (*left*) and H (*right*) key strokes, overlayed at the moment of pressing the key (center line); value plotted is extracted relative pitch (*top*)/yaw (*bottom*) angles of right index finger. 28/47

 Introduction
 System design
 Machine Learning
 Experiments
 Demo
 Conclusion

 0000000
 000000000
 00000000
 0000000
 000
 000

Convolutional Neural Networks

Convolution and Pooling

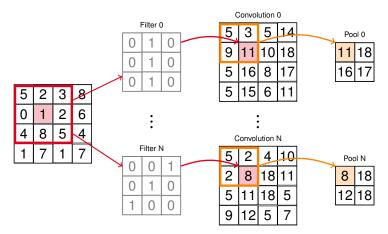
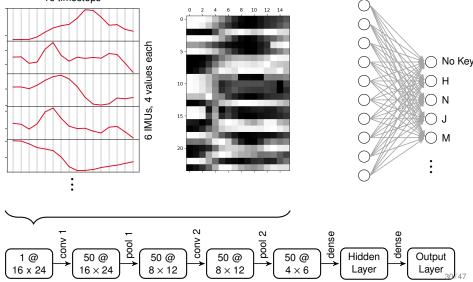


Figure 15: Feature Extraction with CNN

Convolutional Neural Networks

Our Implementation

16 timesteps



	System design		Experiments	Conclusion
000000	00000000000	00000000	000000	000

Experiments

1 Introduction

- 2 System design
- 3 Machine Learning

4 Experiments

- Phase 0 Pipeline Setup
- Phase 1 Slow Single Finger
- Phase 2 Slow Multiple Fingers
- Phase 3 Fast Typing

5 Demo

System design	Experiments ●○○○○○○	Conclusion

Phase 0 – Pipeline Setup

```
imu_ids: [0, 1, 2, 3, 4, 5]
key_codes: [21, 22, 23, 34, ...]
sequence_length: 16
```

```
epochs: 0 //infinite
learning_rate: 0.002
batch_size: 100
sampling_rate: 25
```

```
network_type: cnn2d
cost_function: mse
```

```
convolution_n_filters: 50
convolution_filter_size: [3, 3]
convolution_n_pairs: 2
convolution_arr_dense: [10]
```

Figure 16: Example of a configuration file (truncated)

- easily adjustable
- repeatable experiments

	System design		Experiments ○●○○○○○		Conclusion
Phase ⁻ Overview	1 – Slow Sin	gle Finger	456 RTY FG	7890- UIOP[JKL;	= ←] ← · \ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑ ↑
1 finger,	2 keys			Alt Meta Meta	

Goals:

- detect keystrokes, ignore idle pose
- distinguish between close keys
- evaluate the configuration of the CNN



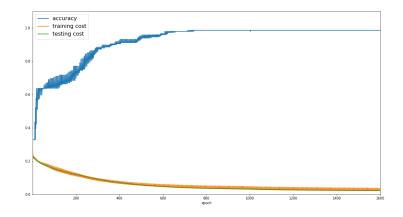
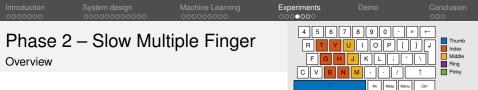


Figure 17: Test results in the first 1600 epochs of learning phase 2

	System design	Machine Learning Experiments Demo ooooooooo ooo●ooo			Conclusion
Phase 2 Overview	– Slow Mu	ltiple Finger	4 5 6 R T Y F G F	7 8 9 0 ⁻ U I O P [J K L ;	= ← 1 + · \ Middle ⇒ Nicky
3 fingers,	10 keys			Alt Meta M	lenu Ctri



3 fingers, 10 keys

Goals:

- distinguish between fingers
- handle hand movement

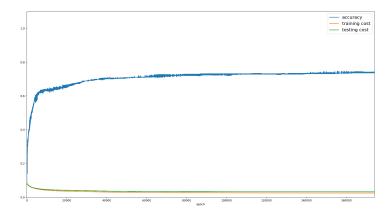


Figure 18: Test results in the first 160000 epochs of learning phase 2

Introduction System design Machine Learning Experiments Demo

Phase 2 – Slow Multiple Fingers

Evaluation of Predictions

						Pred	icted				
		no key	U	1	G	н	J	В	Ν	М	SPC
	no key	0	13	5	9	5	121	2	6	3	0
	U	0	175	0	0	0	0	0	0	0	0
	I	0	1	167	0	0	0	0	0	0	0
	G	0	0	0	181	0	0	0	0	0	0
Actual	Н	0	1	5	0	1	169	0	0	0	0
Act	J	0	0	1	0	1	215	0	3	0	0
	В	0	0	0	0	0	0	167	0	0	0
	Ν	0	0	0	0	0	0	0	180	0	0
	М	0	0	0	0	0	0	0	0	190	0
	SPC	0	0	0	0	4	178	1	0	0	0

Figure 19: Confusion matrix[15]. From this we calculate the accuracy and per key recall & precision [6]

Introduction	System design	Machine Learning	Experiments	Demo	Conclusion
Phase S	3 – Fast Typi	ng	4 5 6 R T Y F G	7 8 9 0 - U 1 0 P [H J K L :	= ← J d Index Middle G Ing Pinky
5 fingers	s, 27 keys			Alt Meta Me	

Goals:

- recognizing every righthand key stroke
- achieve high accuracy
- learn a robust model
- fluent typing

Introduction Syste	em design 🛛 🛛 🛚 🔊	Aachine Learning		Demo	Conclusion
000000 00000	000000000 0	00000000	000000		000

Demo

1 Introduction

- 2 System design
- 3 Machine Learning

4 Experiments

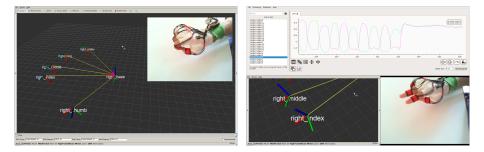
5 Demo

	System design ০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০০	Experiments 0000000	Demo	Conclusion

Demo The Glove

Introduction	System design	Experiments 0000000	Demo	Conclusion
(

Demo Backup Videos



	System design			Conclusion
000000	00000000000	00000000	000000	000

Conclusion

1 Introduction

- 2 System design
- 3 Machine Learning
- 4 Experiments

5 Demo

 Introduction
 System design
 Machine Learning
 Experiments
 Demo
 Conclusion

 0000000
 00000000
 0000000
 0000000
 ●00

Results System Design

Goal (Reminder)

Design a system for recording characteristic hand movements of typing and the corresponding input.

ntroduction System design Machine Learning Experiments Demo Conclusion

Results System Design

Goal (Reminder)

Design a system for recording characteristic hand movements of typing and the corresponding input.

Successes

- the architecture proved suitable
- the glove is non-obstructive
- performance is good enough for a prototype

Improvements

- gyro clipping
- single robust glove
- generalization to different hand types

 Introduction
 System design
 Machine Learning
 Experiments
 Demo
 Conclusion

 0000000
 000000000
 00000000
 0000000
 0●0

Results Machine Learning

Goal (Reminder)

Define an approach for utilizing machine learning to map the recorded data back to the keyboard input.

 Introduction
 System design
 Machine Learning
 Experiments
 Demo
 Conclusion

 0000000
 000000000
 00000000
 00000000
 0●0

Results Machine Learning

Goal (Reminder)

Define an approach for utilizing machine learning to map the recorded data back to the keyboard input.

Successes

- slow typing can be distinguished
- preprocessing helps the learning progress
- CNNs can distinguish between different keys

Improvements

- better accuracy
- reduce delay
- detect holding a key
- detect different modes →(non-)writing position

System design	Experiments 0000000	Conclusion ○○●

Outlook

Goal (Reminder)

Evaluate the quality of such mapping and discuss whether this principle could be turned into a working keyboard alternative.

System design	Experiments 0000000	Conclusion ○○●

Outlook

Goal (Reminder)

Evaluate the quality of such mapping and discuss whether this principle could be turned into a working keyboard alternative.

- reduce delay, remove lookaheads
- increase prediction quality
- two hands
- generalize glove & model
- implement online learning
- better hand pose reconstruction for more use cases

References I

- URL: http://dev-blog.mimugloves.com/data-gloves-overview/ (visited on 04/30/2017).
- [2] Jason Brownlee. 8 Tactics to Combat Imbalanced Classes in Your Machine Learning Dataset. Aug. 2015. URL: http://machinelearningmastery.com/tactics-to-combatimbalanced-classes-in-your-machine-learning-dataset/ (visited on 04/30/2017).
- [3] F. Cavallo et al. "Preliminary evaluation of SensHand V1 in assessing motor skills performance in Parkinson disease". In: Rehabilitation Robotics (ICORR), 2013 IEEE International Conference on. June 2013, pp. 1–6. doi: 10.1109/ICORR.2013.6650466.
- [4] Myung-Chul Cho et al. "A pair of Braille-based chord gloves". In: Proceedings. Sixth International Symposium on Wearable Computers, 2002, pp. 154–155. doi: 10.1109/ISWC.2002.1167238.
- [5] CyberGlove Website. uRL: http://www.cyberglovesystems.com/ (visited on 04/30/2017).
- Jesse Davis and Mark Goadrich. "The relationship between Precision-Recall and ROC curves". In: ICML '06: Proceedings of the 23rd international conference on Machine learning. Pittsburgh, Pennsylvania: ACM, 2006, pp. 233–240. ISBN: 1-59593-383-2. DOI: 10.1145/1143844.1143874.

References II

- [7] Jonathan Ellithorpe and Pearl Tan. "The Learning Keyboard. Using the Xbox Kinect to Learn User Typing Behavior". In: 2012.
- [8] Marcus Georgi, Christoph Amma, and Tanja Schultz. "Recognizing Hand and Finger Gestures with IMU based Motion and EMG based Muscle Activity Sensing.". In: BIOSIGNALS. Ed. by Harald Loose et al. SciTePress, 2015, pp. 99–108. ISBN: 978-989-758-069-7. URL: http://dblp.uni-trier.de/db/conf/biostec/biosignals2015.html#GeorgiAS15.
- [9] Gest. May 2017. url: https://gest.co/ (visited on 04/30/2017).
- [10] Hi5 VR Glove. 2017. uRL: http://hi5vrglove.com/ (visited on 05/01/2017).
- [11] Sepp Hochreiter. "The Vanishing Gradient Problem During Learning Recurrent Neural Nets and Problem Solutions.". In: International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 6.2 (Mar. 2, 2004), pp. 107–116. URL: http://dblp.uni-trier.de/db/journals/ijufks/ijufks6.html#Hochreiter98.
- [12] Keyglove. 2015. URL: http://www.keyglove.net/ (visited on 05/01/2017).
- [13] S. A. Mehdi and Y. N. Khan. "Sign language recognition using sensor gloves". In: Neural Information Processing, 2002. ICONIP '02. Proceedings of the 9th International Conference on. Vol. 5. Nov. 2002, 2204–2206 vol.5. doi: 10.1109/ICONIP.2002.1201884.
- [14] *mi.mu gloves.* URL: http://mimugloves.com/ (visited on 05/01/2017).

References III

- [15] David Poole and Alan K. Mackworth. Artificial Intelligence Foundations of Computational Agents.. Cambridge University Press, 2010, pp. I–XVII, 1–662. ISBN: 978-0-521-51900-7.
- [16] Project Virtual Keyboard. Dec. 2013. URL: http://www.senseboard.com/?p=174 (visited on 04/30/2017).
- [17] Stuart Reid. 10 misconceptions about Neural Networks. May 2014. URL: http: //www.turingfinance.com/misconceptions-about-neural-networks/#blackbox (visited on 05/05/2017).
- [18] Jack V Tu. "Advantages and disadvantages of using artificial neural networks versus logistic regression for predicting medical outcomes". In: *Journal of clinical epidemiology* 49.11 (1996), pp. 1225–1231.
- [19] Thomas G Zimmerman et al. "A hand gesture interface device". In: ACM SIGCHI Bulletin. Vol. 18. 4. ACM. 1987, pp. 189–192.

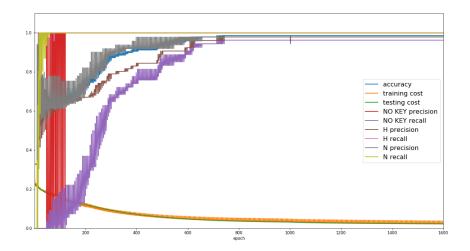


Figure 20: Performance metrics of phase 1, including per key precision and recall