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Motivation

» The Hamburg Bit-Bots compete in the Robocup humanoid
Kid-Size league

» 2050 Goal: to defeat the human world champion soccer team in
a fair game according to the FIFA rules

» Biped Walking is still one of the most challenging topics in
RoboCup

Fabian Fiedler
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New Robots
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Minibot

Fabian Fiedler
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Motors

MX-106T/ MX-106R/ EX-106+

> High level
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possible
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Inverse Kinematics (1K)

» Calculation of the motor angles of the robot for a given goal
position of its limbs and torso

» For DARwIn-OP-like robots there is a well working analytic
IK-Solver by the team NUbots from Newcastle

» It is enough for a walking pattern to generate the position of
the legs and torso of the robot

Fabian Fiedler
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Reinforcemes

Human Gait

Side View of Foot Muscles & Tendons
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Foot of a robot

bian Fiedler
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Robot Gait

» No human-like rolling motion
[Debrunner] possible
» Foot can be parallel to the ground
at all time

Fabian Fiedler
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Foot Movement

» Motors are torque controlled, so the movement of the foot
should be two-times derivable

» On artificial turf the robot should first lift his foot before
moving it forward

» cos(x +m)+ 1, from 0 to 7 for the forward/sideward
movement, from 0 to 27 for the height

1

Forward position
Foot heigt

0.8

06 -

0.4

Position of the feet

0.2 -

0 01 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Percentage of walking phase
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Stabilizing the gait

» Without control of the torso the robot will fall over

» Usually the movements of the torso are highly manually tuned
and the tuning is very tedious

» Team Darwin-Walking: 20 configuration values
> Nimbro-OP-Walking: 60 (140) configuration values

» An optimal or self-improving control would be more suitable

Fabian Fiedler (=] = = = A 13
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A stable upright posture

» A still standing robot with no external force is stable if the
Center of Mass (COM) is inside the convex hull of its feet.

1
COM = ——— Y _mjr;
>ie1 mi -1
» where m; is the mass of the i part and r; its position

> In case of high friction between surface and foot the
Zero-Moment-Point (ZMP) can be referred as a generalization
of stability

Fabian Fiedler (=] = = = o> 14
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Zero-Moment-Point

» "The Zero-Moment-Point is that point on the ground at which
the net moment of the inertial forces and the gravity forces has
no component along the horizontal axes.” [Dasgupta]

OD:mgszze+szG (1)
mg + mag - z

Where OD represents the vector from an origin O to the ZMP D,
m is the total mass, OG reaches from the origin to the Center of
Mass. z denotes the z-axis, i.e. the normal vector of the ground.
Hc is the angular momentum around the Center of Mass G and
ag is the acceleration of of the Center of Mass G. [Sardain]

Fabian Fiedler
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Optimal Walking

min/||OD— 0Z|%dt (2)

» Where OD denotes the vector to the current ZMP and OZ
denotes the vector to the optimal ZMP [Dasgupta99]

» Generally OD should be in the center of the foot

» Suitable as reward/objective function

Fabian Fiedler (=] = = = A 16
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Calculation of the ZMP

_ mgzXx OG xz+zxHg
0D = mg+mag-z

» Especially the angular momentum H¢ is not computable
without deep knowledge of the current torque of each motor

» The torque of a motor is depending on the temperature, the
quality of the gears, the stability of the screws et cetera

> It is therefore neither possible to calculate the ZMP correctly
nor simulate it

Fabian Fiedler (=] = = = A 17
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Center of Pressure

v

The pressure between the foot and the
rx ground can be replaced by a force acting
at the Center of Pressure.

In case of a stable gait COP and the ZMP
match [Sardain]

force sensors

v

v

With a flat surface and an inflexible foot it
is sufficient to add a sensor in each corner
of the feet to calculate the COP
[Vukubratovic]

[Vukubratovic]

» Where f; is the pressure on the sensor and

4
C o fir
oD = @ ri is the position.

Z?:l f;

Fabian Fiedler [m] = = = o™ 18
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Design of the Force Sensors

"3
-

Deformable beam

Predicted
deflection

¢

Sensor marker

Cptional base

[Wasserfall]

Q> 19
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First Prototype

» Cables easily ripped off the sensors

» The deformable beam tends to
break

Fabian Fiedler
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Second Prototype

» The cable routing is a mess

» Connectors tend to be too loose,
thus to slip out

Fabian Fiedler [m] = = = o™ 21
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Third Prototype

bian Fiedler
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Sensor Calibration
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Hooke's Law

» Hooke's Law
» F=k-x
» F is the force, k the Hookes
constant, x the deformation

Fabian Fiedler
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Control system

Walking pattern generator Real robot
- -

Walking
pattern

i | Stabilizer j——

Sensor feedback

[Kajita]

» The history of feedback is not saved over multiple runs
Fabian Fiedler [m] = = o > 27
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Walking pattern generator Real robot

=

N

Walking
pattern

Sensor feedback

[Kajita, modified]

» Improvement of Walking Pattern
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Reinforcement Learning

» "Reinforcement Learning is learning what to do - how to map
situations to actions - so as to maximize a numerical reward
signal. [...] The learner [...] must discover which actions yield
the most reward by trying them.” [Sutton98]

» State s, action a, policy 7 : s — a, reward function r : s,a - R
value function V :s,a — R

Fabian Fiedler
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Reinforcement Learning

Fabian Fiedler

Learning on real hardware needs a very fast convergence — a
small learning space is better

Trajectory of the feet of the robot is given

Trajectory of the torso should be optimal with respect to the
ZMP

State s: percentage of walking phase
Action a: goal position of the torso

Morimoto et al. argues that one can consider the x-axis
(sagittal) and y-axis (lateral) disjunct from each other
[Morimoto07]

[=] = = = o
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1D-tile coding

» "Tile coding is a piecewise constant function
approximation” [Whiteson05]

0.06 Pt ————
x-position of torso
_ 0.04 y-position of torso
£ 002 z-position of right foot
E 0 S =
£
< -0.02 = 1
= 004 - 1
2
S 006
-0.08
0.1 i i —— i i
0.0 0.1 0.2 03 0.4 0.5 0.6 0.7 08 0.9
Percent of left foot support phase [%]
0.1
0.08
E 006 - 1
£ o004 1
<
= 002
2 0
7] "
g -0.02 x-position of torso
004 y-position of torso
0.06 z-position of left foot

0.0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9
Percent of right foot support phase [%]
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Reinforcement Learning

» State s: percent of the walking phase

» Action a: goal position of the torso

v

Reward r : difference from actual ZMP to desired position

v

Calculation of a value function is hardly feasible

v

Policy Search Reinforcement Learning seems better

v

No random exploration leads to reduced chance of falling and
damage

Fabian Fiedler
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Policy Gradient Methods

» Policy Gradient Methods are widely used for Policy Search
Reinforcement Learning
» Easiest black-box method is the finite difference policy gradient
[Deisenroth]
» VE(R(r)) = (607 §0©)71607T 6R
» where §© is an list of added perturbations, in this case out of the
Gaussian distribution
> JR is the list of observed differences in the reward

Fabian Fiedler (=] = = = A 33
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Finite Difference Policy Gradient

0.02
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0.015 z-position of right foot
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Percent of left foot support phase [%)]
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z-position of left foot
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Percent of right foot support phase [%]

» Signal is to noisy for Finite Differences Methods

ian Fiedler
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Gradient Estimation

» There are better black-box gradient estimators like
REINFORCE [Williams90] but they are likely to have the same
problem

» However the position of the ZMP itself is a gradient estimator
for the expected reward

» Goal-position of the torso influences not only the next step but
beyond — Temporal Difference Learning TD(A)(cf. [Sutton98])

Fabian Fiedler [m] = = = o™ 35
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TD(\)

position in [mm]

Fabian Fiedler

0.02 ‘ " Zz-position of right foot
0(;);? X-position of torso
0.005

0 i‘\
-0.005
-0.01 ——/
-0.015 |
2002 b

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Percentage of left foot support phase [%]

Glitch occurred due to a broken sensor

However the history of actions should be similar to a two times

derivable function

Gaussian smoothing of the TD(\)-learning over the actions

prevents jumps in the actions

[m] = = = o
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Current Challenge

Right Hiproll

Goal Aﬁgle
Current Angle

24 24.5 25 255 26 26.5 27 275 28
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Current Challenge

Right Hiproll

Goal Angle
Current Angle
Corrected Goal
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Future Work
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» ROS — Robot specification as URDF for an Inverse-Kinematic-
Solver, e.g. KDL or IKFast, should lead to a stable walking for

any given humanoid

» Each foot needs an own USB cable
» Would support the Dynamxiel-TTL-Bus

» Would support strain gauge based load
cells

Fabian Fiedler [m] = = = o™ 39
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Live Demo

Live Demo

40
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