

MIN Faculty Department of Informatics

Multi-modal Localization using Wi-Fi Signal Strength and 2D Range Finder Bachelor Thesis Defense

Benjamin Scholz

University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems

15. November 2016

Table of Contents

Motivation	Basics	Implementation	Demo	Experiments and Results	Conclusion	Outlook	References

- 1. Motivation
- 2. Basics
- 3. Implementation
- 4. Demo
- 5. Experiments and Results
- 6. Conclusion
- 7. Outlook

References

- Localization is important problem in robotics
- ► Example autonomous vehicle [Levinson et al., 2007]
 - GPS for rough global position
 - LIDAR for precise localization
- Specific LIDAR is popular in robotics
- GPS Signal unreliable

References

Global localization

- Problematic Situations
- Often fails
- Wi-Fi signal strength to infer position
 - MAC-address
 - Signal strength for every access point
 - Multiple access points to infer exact position
 - Combining strength of laser range finder and Wi-Fi

Related Work

- Different approaches to Wi-Fi localization
- Propagation model [Serrano et al., 2004]
- Pre-recorded signals
 - ▶ Linear interpolation [Biswas and Veloso , 2010]
 - Recording data in grid-like fashion
 - Robot can only move on the grid lines
 - Gaussian processes [Ferris et al., 2006]
 - Regression
 - Recording data is not restricted
- Global Localization using Wi-Fi in different Contexts
 - Industrial Environment [Duvallet and Tews, 2008]
 - Iphone [Ito et al., 2014]

Localization using a 2D Laser Range Finder

Localization using a 2D Laser Range Finder

Motivation	Basics	Implementation	Demo	Experiments and Results	Conclusion	Outlook	References	
------------	--------	----------------	------	-------------------------	------------	---------	------------	--

- Environment measurement data (z)
 - Provided by sensors
- Control data (u)
 - commands given to the robot
 - odometers or gyros
- Sensor models
- belief (bel(x))
- Computed Recursively

Motivation Basics Implementation Demo Experiments and Results Conclusion Outlook References

Figure : [Thrun et al., 2005]

Motivation	Basics		Experiments and		References
(c) ↑ be	el(x)				
					 x

Figure : [Thrun et al., 2005]

Figure : [Thrun et al., 2005]

Basics			

- Average of weights
- Comparing short-term with long-term
- Lower short-term than long-term indicates kidnapping
- Adding random particles to set

References

- SSID not unique
- MAC-address unique
- Signal Strength measured in dBm
 - The higher the value, the stronger the signal
 - Logarithmic measurement scale
 - Range from -40 dBm to -90 dBm
- Wi-Fi channels

	Basics			

- Two common approaches to regression:
 - Restricting the classes of functions
 - Putting a prior over all functions
- Gaussian processes to put prior over all functions
- Gaussian processes are generalization of Gaussian distributions
 - Gaussian distribution: distribution over scalars or vectors
 - Gaussian process: distribution over functions

(a) A 25 dimensional correlated random variable (values plotted against index)

(b) colormap showing correlations between dimensions

Figure : [Lawrence, 2013]

Motivation	Basics	Implementation	Demo	Experiments and Results	Conclusion	Outlook	References	

- Prior is defined by a covariance function
- Different covariance functions will lead to different results
- Radial basis function (RBF) kernel

•
$$k(x_p, x_q) = \sigma_f^2 \exp(-\frac{1}{2\ell^2}(x_p - x_q)^2) + \sigma_n^2 \delta_{pq}$$

• Hyperparameters: σ_f , ℓ , σ_n

	Basics			

- Gaussian distribution for every coordinate
- probability of signal strength
- Compute weights

Motivation Basics Implementation Demo Experiments and Results Conclusion Outlook References			Basics						
---	--	--	--------	--	--	--	--	--	--

- Hyperparameters can be learned
- Log-likelihood function
 - The higher the log-likelihood, the better the fit
 - Using derivatives to search maximum
- Resilient backpropagation [Blum and Riedmiller, 2013]
 - Sign of partial first order derivatives

Motivation

Experiments and Results

ts Conclusior

Outlook

References

- Implemented with ROS
- Using AMCL for localization
 - failure probability

turtlebot_teleop and move_base to move the robot

Wi-Fi publisher

Motivation

Experiments and Resu

References

- Needed data:
 - MAC-address
 - Wi-Fi signal strength
- Using terminal command
 - sudo iw dev wlan0 scan
 - sudo iw dev wlan0 scan freq 2432

Wi-Fi Data Collector

		Implementation					
--	--	----------------	--	--	--	--	--

Wi-Fi Data Collector Wi-Fi Data

Motivation	Basics	Implementation	Demo	Experiments and Results	Conclusion	Outlook	References
Motivation	Dasica	mpenentation	Denio		conclusion	Cutiook	References
			X	Barn -			
			5-2-				
							F

Wi-Fi Data Collector Wi-Fi Data

Motivation	Basics	Implementation	Demo	Experiments and Results	Conclusion	Outlook	References

Gaussian Process Mean

Gaussian Process Variance

Motivation	Basics	Implementation	Demo	Experiments and Results	Conclusion	Outlook	References
					1 y m		
							-
							-
							7

Motivation Basics

Implementation

Experiments and Results

ults Conclusio

1 Outlook

References

- Gaussian process for every MAC-address
- Train processes at first start
- Particles spread over map
- Compute weight for every MAC-address observed
- Multiply weights
- Highest weight is most likely position

	Implementation			

Motivation

Implementation

Demo Experi

Experiments and Results

Conclusion

ok Refe

Demo Time

Wi-Fi data

Wi-Fi data

Wi-Fi data

References

- > 20 different goals on the hallway the robot drives to
- At each point the groundtruth is recorded using AMCL
- Wi-Fi position estimation is used at each goal
- Compare Wi-Fi position estimation with AMCL ground truth
- Mean error of 1.81 meters

- Robot drives to 20 different goals on the hallway
- ► At each goal the Wi-Fi position estimation is called
- AMCL gets the result as new initial position
- When the robot arrives at the next goal, the difference to the true pose is recorded
- Wi-Fi position estimation used for global localization
 - Mean error of 2.23 meters
 - Successful in 9 out of 19 tries
- Common method for global localization
 - Mean error of 17.34 meters
 - Successful in 1 out of 19 tries

- Using average weights to detect kidnapped robot
- Robot drives hallway up and down
- After some time the localization is initialized to random place on map
- Kidnapped robot was detected in 10 out of 10 tries

- Wi-Fi position estimation is accurate enough to give AMCL initial pose
- Improved global localization
- Localization failure detection works
- Problems:
 - laser range finder's problems remain, but to lesser extent
 - No information about orientation
 - Computation time
 - Wi-Fi scan time

Outlook

- Different kernel to heighten accuracy
- Compass for orientation
- Speeding up Wi-Fi scan
- Speeding up computation time
- Applying the Wi-Fi model directly in AMCL
- Using Wi-Fi sensor model directly for failure detection

Motivation

- Biswas, J. and Veloso, M. (2010). Wifi Localization and Navigation for Autonomous Indoor Mobile Robots. In *Robotics and Automation (ICRA), 2010 IEEE International Conference on*, pages 4379–4384.
- Blum, M. and Riedmiller, M. (2013). Optimization of Gaussian Process Hyperparameters using Rprop. In European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, pages 339–344.
- Cunningham, J. P. (2012). Gaussian Processes for Machine Learning. University Lecture.
- Duvallet, F. and Tews, A. D. (2008). WiFi Position Estimation in Industrial Environments Using Gaussian Processes. In 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 2216–2221. IEEE.

Bibliography (cont.)

/lotivation

Ferris, B., Hahnel, D., and Fox, D. (2006). Gaussian Processes for Signal Strength-Based Location Estimation. *Proc. Robotics: Science and Systems*, 442:303–310.

- Ito, S., Endres, F., Kuderer, M., Tipaldi, G. D., Stachniss, C., and Burgard, W. (2014). W-RGB-D: Floor-Plan-Based Indoor Global Localization Using a Depth Camera and WiFi. In 2014 IEEE International Conference on Robotics and Automation, ICRA 2014, Hong Kong, China, May 31 - June 7, 2014, pages 417–422.
- Lawrence, N. D. (2013). An Introduction to Gaussian Processes. University Lecture.
- Levinson, J., Montemerlo, M., and Thrun, S. (2007). Map-Based Precision Vehicle Localization in Urban Environments. In Robotics: Science and Systems III, June 27-30, 2007, Georgia Institute of Technology, Atlanta, Georgia, USA.

🖉 Bibliography (cont.)

ition Basics

Rasmussen, C. E. and Williams, C. K. I. (2005). Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning). The MIT Press.

- Serrano, O., Rodero Merino, L., Matellán Olivera, V., and Cañas, J. M. (2004). Robot localization using WiFi signal without intensity map. In V Workshop de agentes Físicos, pages 79–88.
- Thrun, S., Burgard, W., and Fox, D. (2005). *Probabilistic Robotics* (Intelligent Robotics and Autonomous Agents). The MIT Press.

