COLLISION AVOIDANCE OF MOVING OBSTACLES USING LIDAR SENSORS FOR AUTONOMOUS VEHICLES

Wang, Yong

CONTENT

- Introduction
- Lidar Sensor Data
- The System Architecture
- Detection and Tracking of Moving Object
- Classification of Moving Object
- Path Planning
- Conclusion

INTRODUCTION

https://www.youtube.com/watch?v=Uqt_pRbR8rI

INTRODUCTION

- Knowledge of the environment and obstacles
- Sensor Data : Radar, Lidar, and Camera (Monocular and Stereo) [8]

Sensing Modality	Perceived Energy	Raw Measurement	Moving Object Recognition
Radar	Millimeter-wave radio signal (emitted)	Distance (Meters)	motion characteristics
<u>Lidar</u>	600 and 1000 nm laser signal (emitted)	Distance (Meters)	Spatial and motion characteristics
Camera	Visible light (environment)	Light intensity(Pixels)	Appearance and motion characteristics

- Detection, tracking, and classification of moving objects
- Path planning (Based on higher path planning)

LIDAR SENSOR DATA

- Measures distance to a target by illuminating that target with a laser light
- 3D data of surrounding areas
 - 2D picture with the value of each pixel is the distance to a target
 - Scan: one round of Lidar sensor data
- Velodyne HDL-64E S3 [1]
 - Range >=120m
 - Horizontal FOV: 360°
 - Vertical FOV: +2.0° to -24.9°
 - 5 Hz 20 Hz rotation rate

[1]

DETECTING OF MOVING OBJECT

THE OCCUPANCY GRID METHOD

• Create 2D grid map:

- Motion compensation for the ego-vehicle motion
- Determine moving grid cells
 - Counting successive occupied time
 - For example: if K <= 7, the cell is the moving cell

[7]

CLUSTERING

- Moving Lidar scan point: measurement points in moving cells
- Static Lidar scan point: measurement point in the static cells
- **Clustering**: group measurement points belong to the same object
- Using depth information

TRACKING OF MOVING OBJECT

- Results of clustering are considered moving objects
- Tracking moving objects using following step: [3]
 - Step 1: the centroid coordinates Z(t) is derived for each object
 - Step 2: the current and previous object centroids are pairwise matched according to their distance and previous Kalman filter prediction
 - Step 3: for matched objects, a Kalman filter is used for tracking
 - Step 4: for unmatched objects, creating a new tracking

http://cs.stanford.edu/people/teichman/stc/

CLASSIFICATION OF MOVING OBJECT

- Cluster: result from clustering
- Track: result of tracking
- Holistic: statistics of a track
- Goal: determine the class label of each track.
- Using the Augmented Discrete Bayes Filter [3]
 - Based on naïve Bayes assumption
 - Compensations for conditional independence

[3]

FEATURE EXAMPLES

Cluster feature examples

Spin Images

HOG (Histogram of Oriented Gradients) Features

- Holistic feature examples
 - 1) maximum velocity, 2) average velocity, 3) maximum acceleration, and 4) average acceleration

11

[4]

CLASSIFICATION OF MOVING OBJECT

PATH PLANNING

- Using the occupancy grid
- Based on the output of tracking and classification

$$\hat{x}(t) = \left[\hat{X}(t), \hat{Y}(t), \hat{X}(t), \hat{Y}(t)\right]^{T}$$

The object centroid coordinates and of its velocities

- The goal is to:
 - Generating a collision-free trajectory to the goal
 - Decelerating to prevent collision when bypassing is impossible
- Using tentacles to reduce computational complexity
 - Tentacles: a set of drivable paths
 - Constrained by the robot kinematics

Tentacles (dashed black), with for D_i dangerous areas and C_i for collision areas of tentacles i.

[3]

PATH PLANNING

- Calculate obstacle occupation times
 - for each cell: t_{i0} and t_{if}
 - within a range
- Calculate robot occupation times
 - each grid cell in tentacles: t_{ij}
- Check dangerous instants and collision instants
 - $t_j = inf_{c_i \in D_i} \{ t_{ij} : t_{i0} \le t_{ij} \le t_{if} \}$
 - $t_j^c = inf_{c_i \in C_i} \{ t_{ij} : t_{i0} \le t_{ij} \le t_{if} \}$
 - generate a tentacle risk: H_j
- Calculate controls
 - For example translational velocity v

•
$$v = (1 - H)v_s + Hv_u$$

[3]

PATH PLANNING

16

CONCLUSION

- The preceding method works well under most case [6][10]
- There still exist some problems to solve:
 - Line-Of-Sight (LOS) moving objects [5]

CONCLUSION

- Path planning under circumstances need negotiation between vehicles [11]
 - For example two way merge

REFERENCE

- [1] HDL-64E. http://velodynelidar.com/hdl-64e.html. Accessed: 2016-12-11.
- [2] Andrea Cherubini and Francois Chaumette. Visual navigation of a mobile robot with laser-based collision avoidance. The International Journal of Robotics Research, 32(2):189-205, 2013.
- [3] Andrea Cherubini, Fabien Spindler, and Francois Chaumette. Autonomous visual navigation and laser-based moving obstacle avoidance. IEEE Transactions on Intelligent Transportation Systems, 15(5):2101-2110, 2014.
- [4] Michael Delp, Naoki Nagasaka, Nobuhide Kamata, and Michael R James. Classifying and passing 3d obstacles for autonomous driving. In 2015 IEEE 18th International Conference on Intelligent Transportation Systems, pages 1240-1247. IEEE, 2015.
- [5] P. F. Ho and J. C. Chen. Wisafe: Wi-fi pedestrian collision avoidance system. IEEE Transactions on Vehicular Technology, PP(99):1-1, 2016.
- [6] Jesse Levinson, Jake Askeland, Jan Becker, Jennifer Dolson, David Held, Soeren Kammel, J Zico Kolter, Dirk Langer, Oliver Pink, Vaughan Pratt, et al. Towards fully autonomous driving: Systems and algorithms. In Intelligent Vehicles Symposium (IV), 2011 IEEE, pages 163-168. IEEE, 2011.

REFERENCE

- [7] Seiichi Sato, Masafumi Hashimoto, Manabu Takita, Kiyokazu Takagi, and Takashi Ogawa. Multilayer lidar-based pedestrian tracking in urban environments. In Intelligent Vehicles Symposium (IV), 2010 IEEE, pages 849-854. IEEE, 2010.
- [8] Sayanan Sivaraman and Mohan Manubhai Trivedi. Looking at vehicles on the road: A survey of vision-based vehicle detection, tracking, and behavior analysis. IEEE Transactions on Intelligent Transportation Systems, 14(4):1773-1795, 2013.
- [9] Alex Teichman, Jesse Levinson, and Sebastian Thrun. Towards 3d object recognition via classication of arbitrary object tracks. In Robotics and Automation (ICRA), 2011 IEEE International Conference on, pages 4034-4041. IEEE, 2011.
- [10] Sebastian Thrun, Mike Montemerlo, Hendrik Dahlkamp, David Stavens, Andrei Aron, James Diebel, Philip Fong, John Gale, Morgan Halpenny, Gabriel Ho mann, et al. Stanley: The robot that won the darpa grand challenge. Journal of field Robotics, 23(9):661-692, 2006.
- [11] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. Safe, multiagent, reinforcement learning for autonomous driving. arXiv preprint arXiv:1610.03295, 2016.

