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https://www.youtube.com/watch?v=Uqt_pRbR8rI 2



 Knowledge of the environment and obstacles

 Sensor Data : Radar, Lidar, and Camera (Monocular and Stereo) [8]

 Detection, tracking, and classification of moving objects

 Path planning (Based on higher path planning)

Sensing 
Modality

Perceived Energy Raw Measurement Moving Object 
Recognition

Radar Millimeter-wave radio 
signal (emitted)

Distance (Meters) motion characteristics

Lidar 600 and 1000 nm laser 
signal (emitted)

Distance (Meters) Spatial and
motion characteristics

Camera Visible light (environment) Light intensity(Pixels) Appearance and
motion characteristics
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 Velodyne HDL-64E S3 [1]
 Range >=120m
 Horizontal FOV: 360°
 Vertical FOV: 2.0° to െ24.9°
 5 Hz – 20 Hz rotation rate

 Measures distance to a target by illuminating that target with a laser light

 3D data of surrounding areas
 2D picture with the value of each pixel is the distance to a target
 Scan: one round of Lidar sensor data
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 Detecting moving object
 Comparison of  successive Lidar scans

[7]
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 Create 2D grid map:

 Motion compensation for the ego-vehicle motion

 Determine moving grid cells
 Counting successive occupied time
 For example: if K <= 7, the cell is the moving cell 7

[2]
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 Moving Lidar scan point: measurement points in moving cells 

 Static Lidar scan point: measurement point in the static cells

 Clustering: group measurement points belong to the same object

 Using depth information
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 Results of clustering are considered 
moving objects

 Tracking moving objects using 
following step: [3]
 Step 1: the centroid coordinates ܼሺݐሻ

is derived for each object
 Step 2: the current and previous 

object centroids are pairwise 
matched according to their distance 
and previous Kalman filter prediction

 Step 3: for matched objects, a Kalman 
filter is used for tracking

 Step 4: for unmatched objects, 
creating a new tracking

http://cs.stanford.edu/people/teichman/stc/ 9



 Cluster: result from clustering

 Track: result of tracking

 Holistic: statistics of a track

 Goal: determine the class label of each track.

 Using the Augmented Discrete Bayes Filter [3]
 Based on naïve Bayes assumption
 Compensations  for conditional independence

Class

Holistic Cluster
T
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 Cluster feature examples
 Spin Images                                           HOG (Histogram of Oriented Gradients) Features

 Holistic feature examples
 1) maximum velocity, 2) average velocity, 3) maximum acceleration, and 4) average 

acceleration
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ݎܽܿ
݀݁
ܾ݅݇݁

−30.98 −14.68 11.42
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 Using the occupancy grid

 Based on the output of tracking and classification

ොݔ ݐ ൌ ܺ ݐ , ܻ ݐ , ሶܺ ݐ , ሶܻ ݐ
்

The object centroid coordinates and of its velocities

 The goal is to:
 Generating a collision-free trajectory to the goal
 Decelerating to prevent collision when bypassing is impossible

 Using tentacles to reduce computational complexity
 Tentacles: a set of drivable paths
 Constrained by the robot kinematics
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Tentacles (dashed black), with for ܦ dangerous areas and ܥ	 for 
collision areas of tentacles ݅.
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 Calculate obstacle occupation times
 for each cell: ݐ and ݐ
 within a range

 Calculate robot occupation times
 each grid cell in tentacles: ݐ

 Check dangerous instants and collision instants
 ݐ ൌ 	 ݅݊ ݂∈ :ݐ ݐ  ݐ ݐ 	
 ݐ ൌ 	 ݅݊ ݂∈ :ݐ ݐ  ݐ ݐ 	
 generate a tentacle risk: ܪ

 Calculate controls
 For example translational velocity ݒ
 ݒ ൌ 1 െ ܪ ௦ݒ  ௨ݒܪ
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 The preceding method works well under most case [6][10]

 There still exist some problems to solve:
 Line-Of-Sight (LOS) moving objects [5]
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 Path planning under circumstances need negotiation between vehicles [11]
 For example two way merge
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