Distance Sensors: Sound, Light and Vision

THOMAS MAIER

SEMINAR: INTELLIGENT ROBOTICS

Structure

Motivation

Distance Sensors

➢Sound

≻Light

➢Vision

Common Applications

Limitations

Conclusion

➢Sources

Motivation

Distance-Sensors

➢Used in Cars

- Parking assistant
- >Autonomous driving
- Used by different Robots
 - > To detect obstacles and avoid crashes

Distance Sensors - Sound

Ultrasonic sensor

Distance Sensors - Sound

Time of Flight measurement

Time between transmission and detection

>Distance $D = \frac{t}{2}c$ (c is velocity, approx. 340 m/s)

Distance Sensors - Sound

Iow sensitivity to environmental conditions

Speed of sound depends on temperature

>+0.17% / °C ⇔ 0.578m/s / °C

>Can operate in dusty and dirty environments

>Measurement range 0-2.5 Meters with precision of 3cm

Infrared sensor

>Three steps for Measuring Distance

- **1**. Determine reflecting properties of obstacles
- 2. Determine angle of obstacle relative to the sensor
- 3. Compute the distance using informations of step 1 and 2

Determine reflecting properties of obstacles

Phong Modell

Surfaces scatter, absorb and reflect light in different portions

Simplification of these effects

lntensity of reflection $I = C_0(\overrightarrow{\mu_s} \cdot \overrightarrow{\mu_n}) + C_1(\overrightarrow{\mu_r} \cdot \overrightarrow{\mu_v})^n + C_2$

>Intensity of reflection $I = C_0(\overrightarrow{\mu_s} \cdot \overrightarrow{\mu_n}) + C_1(\overrightarrow{\mu_r} \cdot \overrightarrow{\mu_v})^n + C_2$

- Four constants C_0, C_1, C_2 and n
- Four vectors
 - \succ Light source: $\overrightarrow{\mu_s}$
 - \succ Normal vector: $\overrightarrow{\mu_n}$
 - \succ Reflected light: $\overrightarrow{\mu_r}$
 - \succ Viewing vector: $\overrightarrow{\mu_{v}}$

>Intensity of reflection $I = C_0(\overrightarrow{\mu_s} \cdot \overrightarrow{\mu_n}) + C_1(\overrightarrow{\mu_r} \cdot \overrightarrow{\mu_v})^n + C_2$

Asume: reveiver and transmitter are in the same position $\Rightarrow I = C_0 \cos(\alpha) + C_1 \cos^n(2\alpha) + C_2$

Traveled distance 2l
 Pexpressed in terms of d, α and radius of the sensor (r)

$$> l = \frac{d}{\cos(\alpha)} + r\left(\frac{1}{\cos(\alpha)} - 1\right)$$

Energy (E) absorbed by the phototransistor depends on
 Intensity of reflection (I)

 \succ Traveled light distance (2*l*)

 \triangleright Area of the sensor (A)

$$\succ E = \frac{IA}{(2l)^2}$$

$$E = \frac{IA}{(2l)^2}$$

$$PI = C_0 \cos(\alpha) + C_1 \cos^n(2\alpha) + C_2$$

$$PI = \frac{d}{\cos(\alpha)} + r\left(\frac{1}{\cos(\alpha)} - 1\right)$$

$$Assume that C_2 = 0, n = 1 \text{ and } A \text{ is constant}$$

$$P \Rightarrow E = \frac{C_0 \cos(\alpha) + C_1 \cos(2\alpha)}{\left[\frac{d}{\cos(\alpha)} + r\left(\frac{1}{\cos(\alpha)} - 1\right)\right]^2}$$

 $\geqslant E = \frac{C_0 \cos(\alpha) + C_1 \cos(2\alpha)}{\left[\frac{d}{\cos(\alpha)} + r\left(\frac{1}{\cos(\alpha)} - 1\right)\right]^2}$

 $> C_0$ and C_1 indicate the infrared characteristics of an obstacle

 \triangleright Determine by taking infrared reading at known distances(d) and angles(α)

Determine angle of obstacle relative to the sensor

 \succ Maximum reading *E* will occur at $\alpha = 0$

Compute the distance using informations of step 1 and 2

$$E = \frac{C_0 \cos(\alpha) + C_1 \cos(2\alpha)}{\left[\frac{d}{\cos(\alpha)} + r\left(\frac{1}{\cos(\alpha)} - 1\right)\right]^2}$$

$$\Rightarrow \Leftrightarrow d = r(\cos(\alpha) - 1) + \cos(\alpha) \sqrt{\frac{C_0 \cos(\alpha) + C_1 \cos(2\alpha)}{E}}$$

> Faster response times than ultrasonic

Dependence on the reflectance of surrounding objects

Measurement range 5cm – 10m

Precision less than 1cm (measurement range up to 6m)

≻Kinect 1

>People are able to interact in a game with their body

Reconstructed a 3D Model of the environment

>Interprets movements

Source: [IMG1]

>Contains a RGB camera

Depth sensor
 Infrared projector
 Infrared camera

Fechnique of structured light

The sensor knows

Relative geometry between IR projector and IR camera

Dot pattern

Depth image

≻Kinect 2

Source: [IMG2]

Kinect 2

➢ Uses Time of Flight

Source: [IMG3]

Paranormal Activity

Kinect can see imaginary friends

Source: [IMG3]

Common Applications

Ultrasonic sensors

- ≻Cars
- Medicine
- >Underwater
- Infrared sensorsNight Vision Devices
 - Astronomy

≻Kinect

- Virtual Realitiy Interactions
- ➢ 3D Scans

Limitations

Ultrasonic sensors

Useless in space

>requires a minimum target surface area

> Targets of low density may be difficult to sense

Infrared sensors

Needs clear area between sufrace and phototransistor

➢Kinect

Similar to infrared

Cant use in dark environments

Conclusion

Ultrasonic sensors

Iow sensitivity to environmental conditions

Infrared sensors

Faster than ultrasonic sensors

Higher dependency on environment

Needs calibration

➢Kinect

>State-of-the-art

Used in gaming and for 3D-Scans

> Is able to detect movements

Literature

- [1] Title: Ultrasonic Distance Measurement for Linear and Angular Position Control, Author: Daniele Marioli, Emilio Sardini, Andrea Taroni, published by: IEEE Transactions on Instrumentation and Measurement. Vol. 37 No. 4, Dec 1988
- [2]Title: Ultrasonic Distance Measurement, Author: Ju Yangyan, published by: XX International conference for students and young scientists << MODERN TECHNIQUE AND TECHNOLOGIES>>. Section 2
- [3]Title: Using infrared sensors for distance measurement in mobile robots, Author: G.Benet, F. Blanes, J.E. Simó, P. Pérez, published by Robotics and Autonomous Systems 1006 (2002) 1–12, Mar 2002
- [4]Title: Using Ultrasonic and Infrared Sensors for Distance Measurement, Author: Tarek Mohammad, published by: International Journal of Mechanical, Aerospace, Industrial, Mechatronic and Manufacturing Engineering Vol:3, No:3, 2009
- [5]Title: Distance measuring based on stereoscopic pictures, Author: Jernej Mrovlje, Damir Vrancic, published by 9th International PhD Workshop on Systems and Control: Young Generation Viewpoint, Oct 2003
- >[6]Title: Microsoft Kinect Sensor and Its Effect, Author: Zhengyou Zhang, published by IEEE MultiMedia Volume 19, Apr 2012
- [7] <u>http://www.ab.com/en/epub/catalogs/12772/6543185/12041221/12041229/Ultrasonic-Advantages-and-Disadvantages.html</u> (09.11.2016)
- [8] <u>http://www.hongkiat.com/blog/innovative-uses-kinect/</u> (09.11.2016)
- >[9] <u>http://www.azosensors.com/article.aspx?ArticleID=339</u> (09.11.2016)

Images/videos

- [IMG1] <u>https://de.wikipedia.org/wiki/Kinect#/media/File:Xbox-360-Kinect-Standalone.png</u> (09.11.2016)
- [IMG2] <u>https://www.extremetech.com/wp-content/uploads/2013/09/Kinect-640x353.png</u> (09.11.2016)
- [IMG3] <u>https://social.msdn.microsoft.com/Forums/getfile/500812</u> (09.11.2016)
- [IMG4] <u>http://lau.engineering.uky.edu/files/2013/11/Slide2.jpg</u> (09.11.2016)
- [VID1] <u>https://www.youtube.com/watch?v=kDgWm8xJ-As</u> (09.11.2016)

>Stereoscopy

➤Two cameras

Create an illusion of depth (3D Images)

Stereoscopy

 $\geq \varphi_0$ horizontal angle of view

 $angle \varphi_{1,} \varphi_{2}$ angle between optical achsis and object

Distance between cameras

$$\triangleright B = B_1 + B_2$$

$$> B = D \tan(\varphi_1) + D \tan(\varphi_2)$$

 \succ Distance between cameras and object

$$D = \frac{D}{\tan(\varphi_1) + \tan(\varphi_2)}$$

> Number of horizontal pixels x_0

$$\succeq \frac{x_1}{\frac{x_0}{2}} = \frac{\tan(\varphi_1)}{\tan(\frac{\varphi_0}{2})} \Leftrightarrow \tan(\varphi_1) = \frac{2x_1 \tan(\frac{\varphi_0}{2})}{x_0}$$

> Number of horizontal pixels x_0

$$\sum_{\frac{x_1}{2}} \frac{x_1}{\tan(\frac{\varphi_0}{2})} \Leftrightarrow \tan(\varphi_1) = \frac{2x_1 \tan(\frac{\varphi_0}{2})}{x_0}$$

$$\sum_{\frac{x_0}{2}} \frac{-x_2}{\tan(\frac{\varphi_0}{2})} = \frac{\tan(\varphi_2)}{\tan(\frac{\varphi_0}{2})} \Leftrightarrow \tan(\varphi_2) = \frac{-2x_2 \tan(\frac{\varphi_0}{2})}{x_0}$$

$$\sum_{n=1}^{\infty} D = \frac{B}{\tan(\varphi_1) + \tan(\varphi_2)} = \frac{Bx_0}{2 \tan(\frac{\varphi_0}{2}) \cdot (x_1 - x_2)}$$

 \boldsymbol{D} 0 ©⊡⊚ S_R Source: [5]

 $\frac{x_0}{2}$

>Accuracy

- >Marker at 10m, 20m, ..., 60m
- > Distance B = 0.7m
- Measured at 4 different locations

>Accuracy

Location 1	Location 2	Location 3	Location 4	Avg. Distance	Market at
10,18m	9,84m	9,96m	10,13m	10,03m	10m
20,44m	20,41m	20,41m	19,86m	20,28m	20m
30,74m	30,33m	31,25m	30,71m	30,76m	30m
41,12m	40,84m	39,73m	40,05m	40,44m	40m
52,30m	52,05m	53,85m	50,07m	52,07m	50m
61,57m	61,40m	61,75m	60,55m	61,32m	60m

