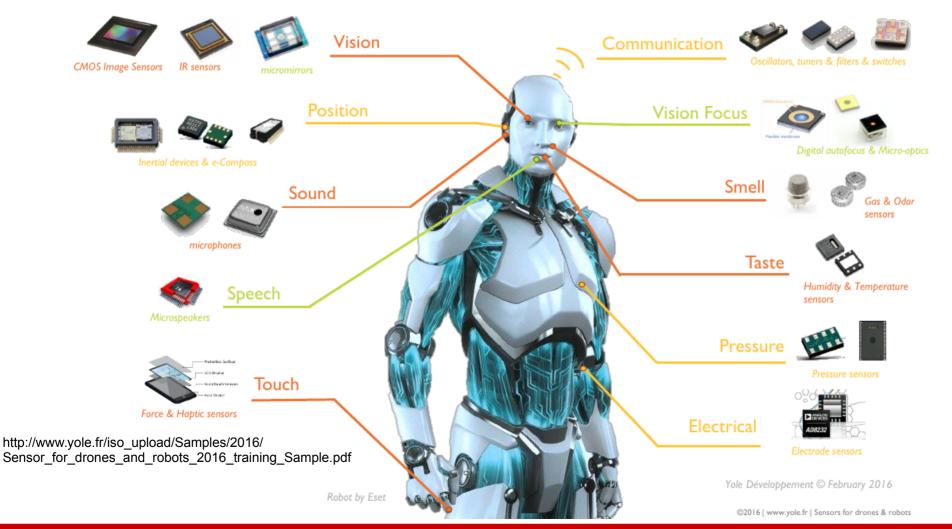


Department of Informatics Intelligent Robotics WS 2016/17

28.11.2016

Neural Models for Multi-Sensor Integration in Robotics

Josip Josifovski 4josifov@informatik.uni-hamburg.de

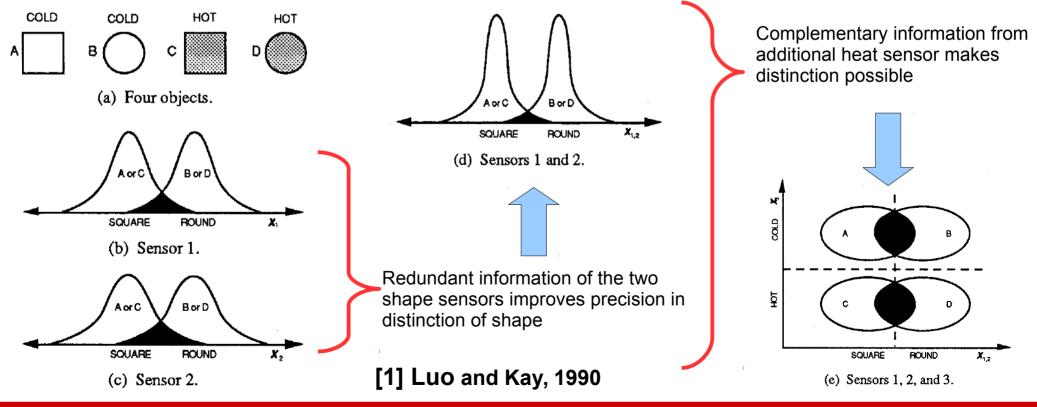


Outline

- Multi-sensor Integration:
 - Definitions, benefits, possible approaches
- Neurally inspired sensor integration and fusion
 - Ideas, benefits and drawbacks
- Case: Robot control by Hierarchical Neural Network
 - Robot and model description, results
- Case: Sensor fusion for estimating robot heading
 - Robot and model description, results
- Current Research at our HRI Lab
- Summary

Multi-Sensor Integration - Definition

Multi-sensor integration - Sensor fusion - Modality - Multi-modal integration


28.11.2016

Neural Models for MSI in Robotics

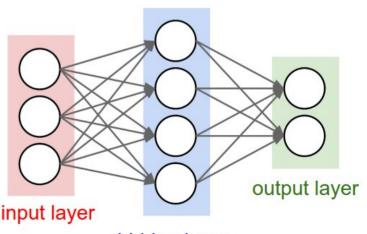
Multiple sensors – Benefits

The motivation behind usage of multiple sensors

- Providing redundant information (increased reliability and availability)
- Providing complementary information (increasing dimensionality i.e. coverage)

Different approaches of MSI/Fusion

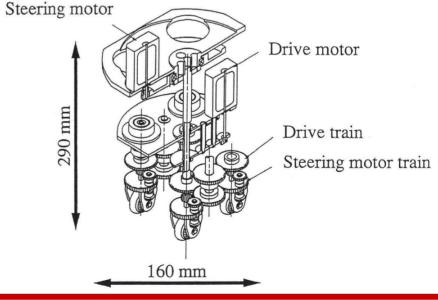
Estimation methods	Non-recursive:
	 Weighted Average
	•Least Squares
	Recursive:
	•Kalman Filtering
	•Extended Kalman Filtering
Classification methods	Parametric Templates
	•Cluster Analysis
	 Learning Vector Quantization (LVQ)
	•K-means Clustering
	•Kohonen Feature Map
	•ART, ARTMAP, Fuzzy-ART Network
Inference methods	•Bayesian Inference
	•Dempster-Shafer Method
	 Generalized Evidence Processing
Artificial intelligence methods	•Expert System
	 Adaptive Neural Network
	•Fuzzy Logic


[2] Luo, Chih-Chen Yih and Kuo Lan Su, 2002

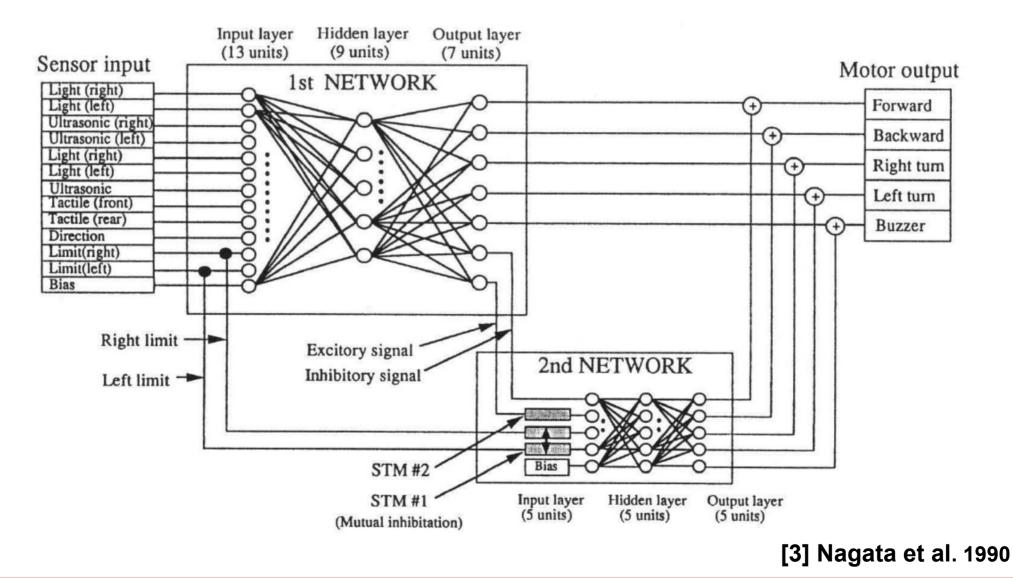
Multi-sensor integration with NNs

- Biologically inspired solution for MSI
- The brain as an integration model
- Benefits of using neural architectures:
 - Unified framework
 - Strong generalization abilities
 - Adaptability
- Drawbacks of using neural architectures:
 - Training procedure
 - Unclear causality

http://www.autismmind.com/



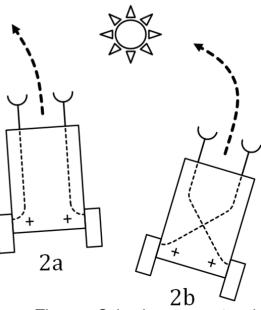
hidden layer http://cs231n.github.io/assets/nn1/neural_net.jpeg


Robot control by Hierarchical NN

- Autonomous mobile robot equipped with 12 sensors of different types: ultrasonic sensors, infrared sensors, tactile sensors, limit sensors
- Locomotion:
 - 4 wheels aligned in same direction
 - Steering motor for heading
 - Drive motor for moving



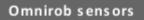
The network model for robot control


Emergent behavior of the robot

- **Training algorithm:** modified version of the backpropagation algorithm (pseudo-impedance control)
- **Training patterns:** obtained from running a simulation, only a subset of all possible 4096 patterns is needed
- Behavior: depending on the training patterns used, two different behaviors of the robots emerge (cops and robbers)

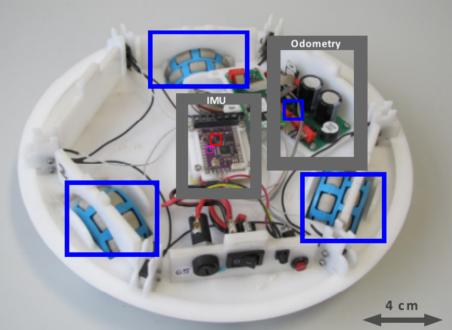
[3] Nagata et al. 1990

Comparison with Braitenberg vehicles


Thomas Schoch - www.retas.de

Sensor fusion for estimating robot heading

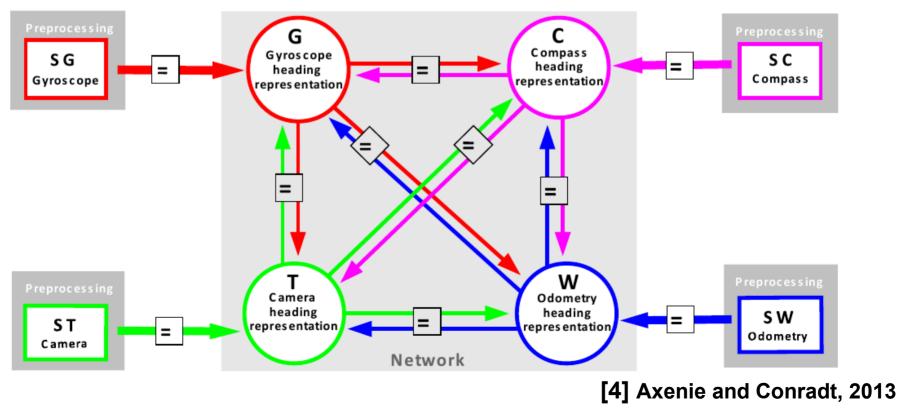
- Robot equipped with 4 different sensors for estimating direction: gyroscope, compas, wheel encoder and camera
- Biologicaly inspired sensor fusion
 model
- Based on the principles of cortical processing such as localization, distributed processing and recurrency


Ceiling tracker

IMU: Baxis Gyroscope Magnetic Compass

Odometry: Wheel encoders

Ceiling tracker: Vision sensor



Recurrent graph network for sensor fusion

Network of four fully connected nodes which mutually influence each other

Information in nodes is encoded by **neural population code**

The network pushes all representations towards an equilibrium state

The network dynamics

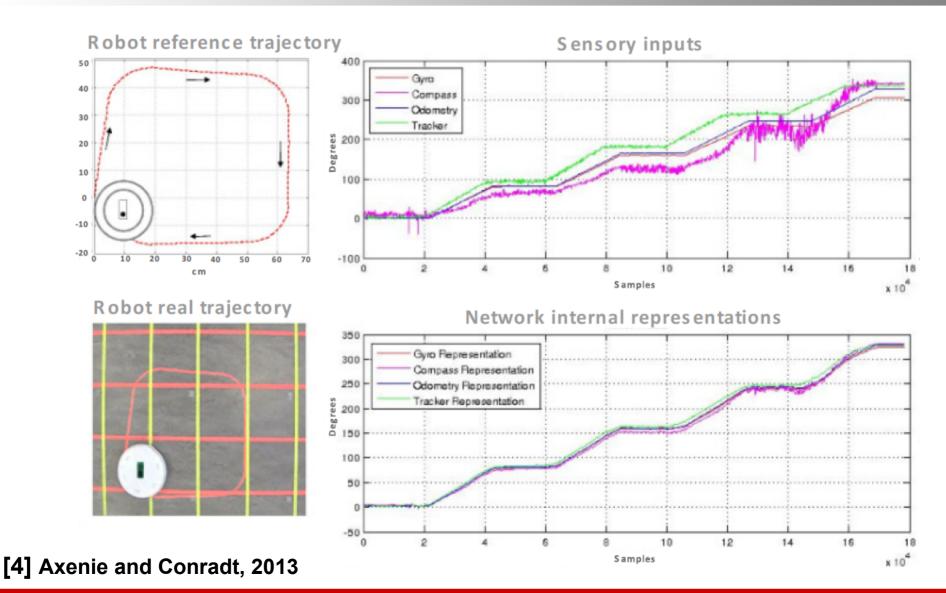
 $\eta(t)$ – update rate at time t E – mismatch between node mi and mj

[4] Axenie and Conradt, 2013

Generic update rule:

$$\begin{split} m_{i}(t+1) &= m_{i}(t) - \eta(t) \cdot E_{m_{i},m_{j}}(t), \quad E_{m_{i},m_{j}}(t) = m_{i}(t) - f_{m_{i},m_{j}}(t) \quad (1) \\ \eta_{i,j}(t+1) &= \eta_{i,j}(0) \cdot \frac{\sum_{k=1}^{N - \{i\}} E_{m_{i},m_{k}}(t)}{N \cdot E_{m_{i},m_{j}}(t)} \quad (2) \end{split} \quad \text{network's belief (numerator)}$$

Example update rules for the Gyroscope (G) node:

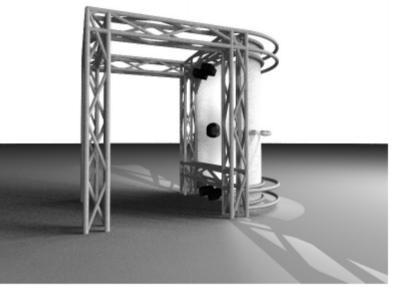

$$G(t+1) = (1 - \eta_{G,C}(t)) \cdot G(t) + \eta_{G,C}(t) \cdot C(t),$$
(3)

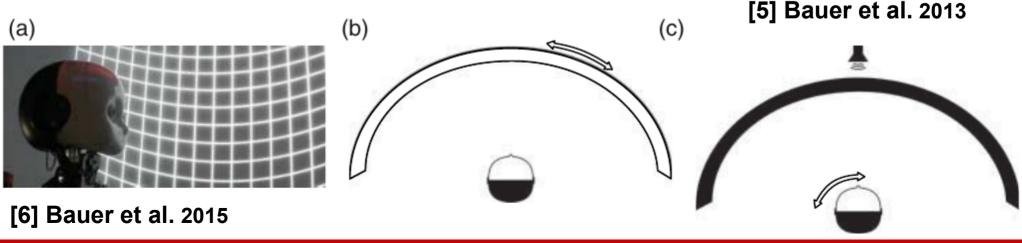
$$G(t+1) = (1 - \eta_{G,W}(t)) \cdot G(t) + \eta_{G,W}(t) \cdot W(t), \qquad (4)$$

$$G(t+1) = (1 - \eta_{G,T}(t)) \cdot G(t) + \eta_{G,T}(t) \cdot T(t),$$
(5)

$$G(t+1) = (1 - \eta_{G,SG}(t)) \cdot G(t) + \eta_{G,SG}(t) \cdot SG(t), \tag{6}$$

Experimental results of the model




28.11.2016

Experiments in the HRI Lab at WTM

The HRI Lab at Knowledge Technology Department

- Allows for experiments with models for multi-modal (**audio-visual**) sensory integration
- Compromise between the advantages of real world and simulation

Experiments in the HRI Lab at WTM

Video of the HRI Lab

Neuaral models for MSI – Summary

Conclusions:

- Neurally inspired models have strong generalization abilities. Their adaptability allows for dealing with unknown and changing environments
- Their advantages come with the price of **training** and **complexity** of the sensor-actuator relationship, bringing **causality** which is sometimes **hard to interpret** and **not predictable**

Questions?

Thank you for the attention

Literature

- 1) Luo, Ren C., and Michael G. Kay. "A tutorial on multisensor integration and fusion." Industrial Electronics Society, 1990. IECON'90., 16th Annual Conference of IEEE. IEEE, 1990.
- 2) Luo, Ren C., Chih-Chen Yih, and Kuo Lan Su. "Multisensor fusion and integration: approaches, applications, and future research directions." IEEE Sensors journal 2.2 (2002): 107-119.
- 3) Nagata, Shigemi, Minoru Sekiguchi, and Kazuo Asakawa. "Mobile robot control by a structured hierarchical neural network." IEEE Control Systems Magazine 10.3 (1990): 69-76.
- 4) Axenie, Cristian, and Jörg Conradt. "Cortically inspired sensor fusion network for mobile robot heading estimation." International Conference on Artificial Neural Networks. Springer Berlin Heidelberg, 2013.
- 5) Bauer, Johannes, and Stefan Wermter. "Learning multi-sensory integration with self-organization and statistics." Ninth international workshop on neural-symbolic learning and reasoning NeSy. Vol. 13. 2013.
- 6) Bauer, Johannes, Jorge Dávila-Chacón, and Stefan Wermter. "Modeling development of natural multi-sensory integration using neural self-organization and probabilistic population codes." Connection Science 27.4 (2015): 358-376.