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Introduction
Robotic arm

= Kinematic chain of base, links, joints, end
flange & end effector
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Figure 1 : Robotic arms [3]




Manipulator Kinematics

= Position : pick & place, assembly, stacking

= \/elocity : cutting, scanning, painting,
machining

= Forward : find position/velocity of end effector
= |nverse : find joint parameter




Tactile Sensors

= physically interact with objects

= Jetect, measure and convert information to
suitable form for use In intelligent systems
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Figure 2 : Atactile sensor [5]




Types of Tactile Sensors

= Normal pressure : Piezoresistive array,
Capacitive array

= Skin deformation : Optical, Magnetic

= Dynamic tactile sensing : Piezoelectric
(stress rate), Skin acceleration




Preliminary Experiments [1]

» Aim : Flexible and robust robotic
manipulation

= Task : Grasp-Lift-Replace an object

= Proposed technology : Dynamic tactile
Sensors




The Manipulator
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Figure 3 : Experimental setup [1]




Experimental Procedure

= Pre-contact phase

= |_oading phase

= Manipulation phase
= Unloading phase

= Post-contact phase
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Figure 4 : Parameters describing phase transitions [1]




Discussion
Control during phase change

= Requirement : smooth & event-driven
transitions

®» Solution for smooth transition: sensor on
outer skin, foam between accelerometer &
force sensor, compliant end effector

= Solution for event-driven transition: dynamic
tactile sensor (skin acceleration sensor)



Discussion
Detecting phase change

= One Indicator may be faster or more reliable
than another In a certain phase

= Dynamic tactile sensor helps in faster
Indication and deals with uncertainty of
object characteristics

= Combination of force sensor signal and
tactile sensor signal may be reliable for
certain phase change detection




Observation

= Grasp-lift manipulation Is easy

= Challenge: smooth & flexible (event-driven)
manipulation

= Dynamic tactile sensors must be designed to
detect contact status and phase change
reliably and without noise

= Force and position sensors are needed for
gentle and flexible manipulation.



Advanced Tactile Sensing and
Manipulation |2}

= Aim : Object manipulation in an unstructured
environment

Task : Scraping with
a spatula in an altered
environment

Figure 5 : Robot performing scraping task [2]




Proposed technology : Tactile sensing

= |n-hand localization of object

= Dynamic motor
= Perpetual coupli

orimitives

ng & tactile feedback

= Dimensionality reduction

= Policy search



|_ocalization of object inside the robot hand

» Pose estimation algorithms

o Learn object model

o Estimated object pose using learned model
= Here, intensity value vector of tactile image

patches are used as
features of object
appearance

Figure 5 : Atactile image [2]



Dynamic Motor Primitives (DMP)

= Non-linear dynamic system:

o Spring-da

il

o Forcing fu
system z

1

per system
ction f(z) driven by canonical

= |mitation learning process

= Finds weights such that resultant motion
resembles human demonstration



DMP (Forcing function)
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Figure 6 : Forcing function formula [2]
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Perpetual coupling & tactile feedback

= Allows change of plan/policy at runtime
though tactile feedback

= Tactile feedback = desired tactile trajectory —
current tactile signal

= New forcing function = old forcing function +
tactile feedback
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Figure 7 : Updated forcing function after tactile feedback [2]



Dimensionality reduction of tactile
Information - Motivation

= Number of weights to be learnt Is large
= Eg. Consider an 8*8 tactile image.

o tactile vector length = 64

o number of Gaussians in model = 50

o number of weights to be learned for a single
DMP =64 * 50 = 3200




Dimensionality reduction of tactile
Information - Techniques

= Principal component analysis :

~ Only parts of tactile image that vary throughout
task execution are considered for feedback.

= \\eight per phase :

Action Is divided into phases by clustering
Images based on similarity. One weight is

learned per phase.



Policy search for learning tactile feedback
welghts

= Optimizes tactile feedback parameter
weights (learn controller or robot policy)
using reinforcement learning to maximize
reward

= Here, Policy optimization Is done using
episodic Relative Entropy Policy Search
(REPS)




Experiment

= Task : Scraping a surface with a spatula
= Test 1 : Elevation of surface by 5cm

= Test 2 : Elevation of surface by 7.5cm (by
placing a ramp)

= Goal : Adjust tactile feedback to the
dynamically changing height by correcting
pressure of spatula on surface



= \\orking procedure :
o Learning from human demonstrations

o For each test, 2 principle components, 3
welights (1 weight per phase of scraping task),
3 DMPs (1 DMP per dimension of 3D

- Cartesian space) were considered.

o Number of tactile feedback weights to
optimise with REPS = 18.

o Policy learning process is repeated 3 times per
test each consisting of 20 episodes and their
resultant policy updates




Experimental Results
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Figure 8 : Mean rewards and standard errors after each policy update [2]

Robot learnt a policy which generalizes to different
heights.




Conclusion

= |mitation learning and tactile feedback
Improves task execution (object
manipulation) by robots in an altered
environment.
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Video 1 : Imitation learning and policy updation [7]
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Sticky Note
A short video shall play here
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