

Introduction to Robotics Lecture 3

Jianwei Zhang, Lasse Einig [zhang, einig]@informatik.uni-hamburg.de

University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems

April 22, 2016

Outline

Introduction Kinematic Equations **Robot Description** Recapitulation of DH-Parameter URDF Inverse Kinematics for Manipulators Differential motion with homogeneous transformations Jacobian Trajectory planning

Robot Description - Recapitulation of DH-Parameter

Introduction to Robotics

Recapitulation of DH-Parameter

- universal minimal robot description
- based on frame transformations
- four parameters per frame transformation
- serial chain of transformations
- unique description of T₆

Drawbacks

- ambiguous convention
- only kinematic chain described
- missing information on geometry, physical constraints, dynamics, collisions, inertia, sensors, ...

Definition of joint coordinate systems

- CS₀ is the stationary origin at the base of the manipulator
- axis z_i is set along the axis of motion of the i^th link
- axis x_i is the common normal of $z_{i-1} \times z_i$
- axis y_i concludes a right-handed coordinate system

Parameters for description of two arbitrary links

Two parameters for the description of the link structure i

- a_i: shortest distance between the z_{i-1}-axis and the z_i-axis
- α_i: rotation angle around the x_i-axis, which aligns the z_{i-1}-axis to the z_i-axis

 a_i and α_i are constant values due to construction

Parameters for description of two arbitrary links (cont.)

Two for relative distance and angle of adjacent links

- ► d_i: distance origin O_{i-1} of the (i-1)st CS to intersection of z_{i-1}-axis with x_i-axis
- θ_i: joint angle around z_{i-1}-axis to align x_{i-1}parallel to x_i-axis into x_{i-1}, y_{i-1}-plane
- θ_i and d_i are variable
 rotational: θ_i variable, d_i fixed
 translational: d_i variable, θ_i fixed

Robot Description - URDF

Introduction to Robotics

Universal Robot Description Format

Documentation

http://wiki.ros.org/urdf http://wiki.ros.org/urdf/xml

- robot description format used in ROS²
- hierarchical description of components
- XML format representing robot model
 - kinematics and dynamics
 - visual
 - collision
 - configuration

URDF: Structure

links geometrical properties

- visual
- inertial
- collision

joints geometrical connections

- geometry
- structure
- config

sensors attached sensors transmissions transmission properties gazebo simulation properties model_state robot state

Robot Description - URDF

Introduction to Robotics

URDF: XML Tree Structure

- Filename: robotname.urdf
- XML prolog:

<?xml version="1.0" encoding="utf-8"?>

XML element types

<tag attribute="value"/>

```
<tag attribute="value">
text or element(s)
</tag>
```

- XML comments
 - <!-- Comments are placed within these tags -->

URDF: XML Tree Structure (cont.)

1st-level structure

```
<robot name="samplerobot">
</robot>
```

2nd-level structure

link, joints, sensors, transmissions, gazebo, model_state

▶ 3rd-level structure

visual, inertia, collision, origin, parent, ...

4th-level structure

URDF: Link

```
<link name="sample_link">
  <!-- describes the mass and inertial properties of
      the link -->
  <inertial/>
  <!-- describes the visual appearance of the link.
       can be describe using geometric primitives or
       meshes -->
  <visual>
  <!-- describes the collision space of the link.
       is described like the visual appearance -->
  <collision/>
</link>
```


Robot Description - URDF

Introduction to Robotics

URDF: Link – visual – primitives

Geometric primitives for describing visual appearance of the link

```
<link name="base_link">
<visual>
<origin xyz="0 0 0.01" rpy="0 0 0"/>
<geometry>
<box size="0.2 0.2 0.02"/>
</geometry>
<material name="cyan">
<color rgba="0 1.0 1.0 1.0"/>
</material>
</visual>
</link>
```

- Geometric primitives: <box>, <cylinder>, <sphere>
- Materials: <color>, <texture>

URDF: Link - visual - meshes

3D meshes for describing visual appearance of the link

```
<link name="base_link">
<visual>
<origin xyz="0 0 0.01" rpy="0 0 0"/>
<geometry>
<mesh filename="meshes/base_link.dae"
</geometry>
</visual>
</link>
```

- the <collision> element is described identically to the <visual> element
- an additional <collision_checking> primitive can be used to approximate

URDF: Link – inertial

Parameters describing the physical properties of the link

```
<link name="base_link">
<inertial>
<origin xyz="0 0 0" rpy="0 0 0"/>
<mass value="1">
<inertia ixx="100" ixy="0" ixz="0"
iyy="100" iyz="0" izz="100" />
</inertial>
</link>
```

- center of gravity <origin xyz>
- object mass <mass value>
- inertia tensor <intertia>

URDF: Inertia

Inertial tensor describes the dynamic physical properties of the link

- orientation and position of the inertia CS described by <origin> tag
- tensor is a symmetric 3 × 3 matrix
- diagonal values describe main inertial axes ixx, iyy, izz
- ixy, ixz, iyz are 0 for geometric primitives
- rotations around largest and smallest inertial axis are most stable

URDF: Joint

```
<joint name="base_link_to_cyl" type="revolute">
  <!-- describes joint position and orientation -->
  <origin xyz="0 0 0.07" rpy="0 0 0"/>
  <!-- describes the related links -->
  <parent link="base_link"/>
  <child link="base cyl"/>
  <!-- describes the axis of rotation-->
  <axis xyz="0 0 1"/>
  <!-- describes the joint limits-->
  imit velocity="1.5707963267"
         lower="-3.1415926535" upper="3.1415926535"/>
</joint>
```


URDF: Joint (cont.)

type	revolute, continuous, prismatic, fixed,
	floating, planar
parent_link	link which the joint is connected to
child_link	link which is connected to the joint
axis	joint axis relative to the joint CS. Represented
	using a normalized vector
limit	joint limits for motion (lower, upper),
	velocity and effort
dynamics	damping, friction
calibration	rising, falling
mimic	joint, multiplier, offset
<pre>safety_controller</pre>	soft_lower_limit, soft_upper_limit,
	k_position, k_velocity

URDF: Other elements

- sensor
 - position and orientation relative to link
 - sensor properties
 - update rate
 - resolution
 - minimum / maximum angle
- transmissions
 - relation of motor to joint motion
- gazebo
 - simulation properties
- model state
 - description of different robot configurations

URDF: Hierarchy

Outline

Introduction

Kinematic Equations

Robot Description

Inverse Kinematics for Manipulators

Analytical solvability of manipulator

Example 1: a planar 3 DOF manipulator

The algebraical solution using the example of PUMA 560

The solution for RPY angles

Solution for arm configurations

Technical difficulties during the development of control software

A Framework for robots under UNIX: RCCL

Differential motion with homogeneous transformations

Outline (cont.)

Jacobian Trajectory planning

<ロト < 回 > < 三 > < 三 > の < ()</p>

Inverse kinematics for manipulators

Set of problems

- In the majority of cases the control of robot manipulators takes place in the *joint space*,
- The informations about objects are mostly given in the cartesian space.

For getting a specific tool frame T related to the world, joint values $\theta(t) = (\theta_1(t), \theta_2(t), ..., \theta_n(t))^T$ should be calculated in two steps:

- 1. Calculation of $T_6 = Z^{-1}BGE^{-1}$;
- 2. Calculation of $\theta_1, \theta_2, ..., \theta_n$ via T_6 .

 \Longrightarrow In this case the inverse kinematics is more important than the forward kinematics.

The solution using the example of PUMA 560

$$T_6 = T'T'' = \begin{bmatrix} n_x & o_x & a_x & p_x \\ n_y & o_y & a_y & p_y \\ n_z & o_z & a_z & p_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$n_{x} = C_{1}[C_{23}(C_{4}C_{5}C_{6} - S_{4}S_{6}) - S_{23}S_{5}C_{6}] - S_{1}(S_{4}C_{5}C_{6} + C_{4}S_{6})$$
(13)

$$n_{y} = S_{1}[C_{23}(C_{4}C_{5}C_{6} - S_{4}S_{6} - S_{23}S_{5}S_{6}] + C_{1}(S_{4}C_{5}C_{6} + C_{4}S_{6})$$
(14)

$$n_{z} = -S_{23}[C_{4}C_{5}C_{6} - S_{4}S_{6}] - C_{23}S_{5}C_{6}$$
(15)
(16)

The solution using the example of PUMA 560 (cont.)

$o_x = \dots$	(17)
$o_y = \dots$	(18)
<i>o_z</i> =	(19)
<i>a_x</i> =	(20)
$a_y = \dots$	(21)
a _z =	(22)
$p_{x} = C_{1}[d_{6}(C_{23}C_{4}S_{5} + S_{23}C_{5}) + S_{23}d_{4} + a_{3}C_{23} + a_{2}C_{2}] - S_{1}(d_{6}S_{4}S_{5})$	$+ d_2)$ (23)
$p_{y} = S_{1}[d_{6}(C_{23}C_{4}S_{5} + S_{23}C_{5}) + S_{23}d_{4} + s_{3}C_{23} + a_{2}C_{2}] + C_{1}(d_{6}S_{4}S_{5})$	$+ d_2)$ (24)
$p_7 = d_6(C_{23}C_5 - S_{23}C_4S_5) + C_{23}d_4 - a_2S_{23} - a_2S_2$	(25)

イロン イ団 トイミン イミン のへや

Remark

- Non-linear equations
- Existence of solutions: Workspace: the volume of space that is reachable for the tool of the manipulator.
 - "dexterous workspace"
 - "reachable workspace"
- Many joint positions that produce a similar TCP position using the example of PUMA 560:
 - Ambiguity of solutions for $\theta_1, \theta_2, \theta_3$ related to given **p**.
 - For each solution of $\theta_4, \theta_5, \theta_6$ the alternative solution exists:

Remark (cont.)

 Different solution strategy: closed solutions vs. numerical solutions

Different methods for solution finding

Closed form (analytical):

- algebraic solution
 - + accurate solution by means of equations
 - solution is not geometrically representative
- geometrical solution
 - + case-by-case analysis of possible robot configurations
 - robot specific

Numerical form:

- iterative methods
 - + the methods are transferable
 - computationally intensive, for several exceptions the convergence can not be guaranteed

Inverse Kinematics for Manipulators

Introduction to Robotics

Methods for solution finding

Solvability

"The inverse kinematics for all systems with 6 DOF (translational or rotational joints) in a simple serial chain is always numerical solvable."

Inverse Kinematics for Manipulators - Analytical solvability of manipulator

Introduction to Robotics

Analytical solvability of manipulator

The closed solution exists if specific constraints (sufficient constraints) for the arm geometry are satisfied:

If 3 sequent axis intersect in a given point

- or if 3 sequent axis are parallel to each other
- manipulators should be designed regarding these constraints
- most of them are
 - PUMA 560: axes 4, 5 & 6 intersect in a single point
 - Mitsubishi PA10, KUKA LWR, PR2
 - 3-DOF planar (RPC)

Introduction to Robotics

Inverse Kinematics for Manipulators - Example 1: a planar 3 DOF manipulator

Example 1: a planar 3 DOF manipulator

Introduction to Robotics

Inverse Kinematics for Manipulators - Example 1: a planar 3 DOF manipulator

Example 1: a planar 3 DOF manipulator (cont.)

θ_1	 1
θ_2	2
θ_3	3
$\frac{\theta_1}{\theta_2}$	

$${}^{0}T_{3} = \begin{bmatrix} C_{123} & -S_{123} & 0 & l_{1}C_{1} + l_{2}C_{12} \\ S_{123} & C_{123} & 0 & l_{1}S_{1} + l_{2}S_{12} \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

The algebraical solution for the example 1

Specification for the TCP: (x, y, ϕ) . For such kind of vectors applies:

$${}^{0}T_{3} = \begin{bmatrix} C_{\phi} & -S_{\phi} & 0 & x \\ S_{\phi} & C_{\phi} & 0 & y \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Resultant four equations can be derived:

$$C_{\phi} = C_{123}$$
(26)

$$S_{\phi} = S_{123}$$
(27)

$$x = l_1 C_1 + l_2 C_{12}$$
(28)

$$y = l_1 S_1 + l_2 S_{12}$$
(29)

Inverse Kinematics for Manipulators - Example 1: a planar 3 DOF manipulator

Introduction to Robotics

The algebraical solution for the example 1 (cont.)

The function *atan*2 is defined as:

$$\theta = atan2(y, x) = \begin{cases} 0 & \text{for } x = 0, y = 0\\ \pi/2 & \text{for } x = 0, y > 0\\ 3 * \pi/2 & \text{for } x = 0, y < 0\\ atan(y, x) & \text{for } +x \text{ and } +y\\ 2\pi - atan(y, x) & \text{for } +x \text{ und } -y\\ \pi - atan(y, x) & \text{for } -x \text{ und } +y\\ \pi + atan(y, x) & \text{for } -x \text{ und } -y \end{cases}$$

Inverse Kinematics for Manipulators - Example 1: a planar 3 DOF manipulator

MIN Faculty Department of Informatics

Introduction to Robotics

The algebraical solution for the example 1 (cont.)

Square and add (28) and (29)

$$x^2 + y^2 = l_1^1 + l_2^2 + 2l_1l_2C_2$$

using

$$C_{12} = C_1 C_2 - S_1 S_2, S_{12} = C_1 S_2 + S_1 C_2$$

giving

$$C_2 = \frac{x^2 + y^2 - l_1^2 - l_2^2}{2l_1 l_2}$$

for goal in workspace

$$S_2 = \pm \sqrt{1 - C_2^2}$$

solution

$$\theta_2 = atan2(S_2, C_2)$$

Introduction to Robotics

Inverse Kinematics for Manipulators - Example 1: a planar 3 DOF manipulator

The algebraical solution for the example 1 (cont.)

solve (28) and (29) for θ_1

$$\theta_1 = atan2(y, x) - atan2(k_2, k_1)$$

where $k_1 = l_1 + l_2 C_2$ and $k_2 = l_2 S_2$.

solve θ_3 from (26) and (27)

$$\theta_1 + \theta_2 + \theta_3 = atan2(S_{\phi}, C_{\phi}) = \phi$$

Inverse Kinematics for Manipulators - Example 1: a planar 3 DOF manipulator

The geometrical solution for the example 1

Introduction to Robotics

Inverse Kinematics for Manipulators - Example 1: a planar 3 DOF manipulator

The geometrical solution for the example 1 (cont.)

Calculate θ_2 via the "law of cosines":

$$x^{2} + y^{2} = l_{1}^{2} + l_{2}^{2} - 2l_{1}l_{2}\cos(180 + \theta_{2})$$

The solution:

$$heta_2 = \pm \cos^{-1} rac{x^2 + y^2 - l_1^2 - l_2^2}{2l_1 l_2} \ heta_1 = eta \pm \psi$$

where:

$$\beta = atan2(y, x), \quad \cos \psi = \frac{x^2 + y^2 - l_1^2 - l_2^2}{2l_1\sqrt{x^2 + y^2}}$$

For $\theta_1, \theta_2, \theta_3$ applies:

$$\theta_1 + \theta_2 + \theta_3 = \phi$$

Inverse Kinematics for Manipulators - Example 1: a planar 3 DOF manipulator

Introduction to Robotics

Algebraical solution (with polynomial conversion)

The following substitutions are used for the polynomial conversion of transcendental equations:

$$u = tan\frac{\theta}{2}$$
$$\cos \theta = \frac{1 - u^2}{1 + u^2}$$
$$\sin \theta = \frac{2u}{1 + u^2}$$

Inverse Kinematics for Manipulators - Example 1: a planar 3 DOF manipulator

Introduction to Robotics

Algebraical solution (with polynomial conversion) (cont.)

Example: The following transcendental equation is given:

 $a\cos\theta + b\sin\theta = c$

After the polynomial conversion:

$$a(1-u^2)+2bu=c(1+u^2)$$

The solution for u:

$$u = \frac{b \pm \sqrt{b^2 - a^2 - c^2}}{a + c}$$

Then:

$$\theta = 2tan^{-1}\big(\frac{b\pm\sqrt{b^2-a^2-c^2}}{a+c}\big)$$

Inverse Kinematics for Manipulators - The algebraical solution using the example of PUMA 560

Introduction to Robotics

Algebraic solution using the PUMA 560

Calculation of $\theta_1, \theta_2, \theta_3$: The first three joint angles $\theta_1, \theta_2, \theta_3$ affect the position of the TCP $(p_x, p_y, p_z)^T$ (in case $d_6 = 0$).

$$p_x = C_1[S_{23}d_4 + a_3C_{23} + a_2C_2] - S_1d_2 \tag{30}$$

$$p_y = S_1[S_{23}d_4 + a_3C_{23} + a_2C_2] + C_1d_2$$
(31)

$$p_z = C_{23}d_4 - a_3S_{23} - a_2S_2 \tag{32}$$

The outcome of this is:

$$heta_1 = tan^{-1}(rac{\mp p_y\sqrt{p_x^2 + p_y^2 - d_2^2 - p_x d_2}}{\mp p_x\sqrt{p_x^2 + p_y^2 - d_2^2} + p_y d_2})$$

Inverse Kinematics for Manipulators - The algebraical solution using the example of PUMA 560

Introduction to Robotics

Algebraic solution using the PUMA 560 (cont.)

$$\theta_3 = tan^{-1} \left(\frac{\mp A_3 \sqrt{A_3^2 + B_3^2 - D_3^2 + B_3 D_3}}{\mp B_3 \sqrt{A_3^2 + B_3^2 - D_3^2 + A_3 D_3}} \right)$$

$$\begin{aligned} A_3 &= 2a_2a_3\\ B_3 &= 2a_2d_4\\ D_3 &= p_x^2 + p_y^2 + p_z^2 - a_2^2 - a_3^2 - d_2^2 - d_4^2 \end{aligned}$$

Inverse Kinematics for Manipulators - The algebraical solution using the example of PUMA 560

Introduction to Robotics

Algebraic solution using the PUMA 560 (cont.)

and

$$heta_2 = tan^{-1}(rac{\mp B_2\sqrt{p_x^2 + p_y^2 - d_2^2} + A_2p_z}{\mp A_2\sqrt{p_x^2 + p_y^2 - d_2^2} + B_2p_z})$$

$$A_2 = d_4 C_3 - a_3 S_3$$
$$B_2 = -a_3 C_3 - d_4 S_3 - a_2$$

Inverse Kinematics for Manipulators - The solution for RPY angles

Introduction to Robotics

The solution for RPY angles

 $T = R_{z,\phi} R_{y,\theta} R_{x,\psi}$

The solution for following equation is sought:

$$R_{z,\phi}^{-1}T = R_{y,\theta}R_{x,\psi}$$

$$\begin{bmatrix} f_{11}(\mathbf{n}) & f_{11}(\mathbf{o}) & f_{11}(\mathbf{a}) & 0\\ f_{12}(\mathbf{n}) & f_{12}(\mathbf{o}) & f_{12}(\mathbf{a}) & 0\\ f_{13}(\mathbf{n}) & f_{13}(\mathbf{o}) & f_{13}(\mathbf{a}) & 0\\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} C\theta & S\theta S\psi & S\theta C\psi & 0\\ 0 & C\psi & -S\psi & 0\\ -S\theta & C\theta S\psi & C\theta C\psi & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$f_{11} = C\phi x + S\phi y$$

$$f_{12} = -S\psi x + C\phi y$$

$$f_{13} = z$$

Inverse Kinematics for Manipulators - The solution for RPY angles

MIN Faculty Department of Informatics

Introduction to Robotics

The solution for RPY angles (cont.)

The equation for $f_{12}(\mathbf{n})$ leads to:

 $-S\phi n_x + C\phi n_y = 0$

 $\phi = atan2(n_y, n_x)$

and

 $\phi = \phi + 180^{\circ}$

The solution with the elements f_{13} and f_{11} are as appropriate:

 $-S\theta = n_z$

Inverse Kinematics for Manipulators - The solution for RPY angles

MIN Faculty Department of Informatics

Introduction to Robotics

The solution for RPY angles (cont.)

and

$$C\theta = C\phi n_x + S\phi n_y$$

$$\theta = atan2(-n_z, C\phi n_x + S\phi a_y)$$

The solution with the elements f_{23} and f_{22} are as appropriate:

$$-S\psi = -S\phi a_x + C\phi a_y$$

 $C\psi = -S\phi o_x + C\phi o_y$

$$\psi = atan2(S\phi a_x - C\phi a_y, -S\phi o_x + C\phi o_y)$$

Inverse Kinematics for Manipulators - Solution for arm configurations

MIN Faculty Department of Informatics

=

Introduction to Robotics

Solution for arm configurations

Definition of different arm configurations shoulder RIGHT-arm, LEFT-arm elbow ABOVE-arm, BELOW-arm wrist WRIST-down, WRIST-up

Inverse Kinematics for Manipulators - Solution for arm configurations

MIN Faculty Department of Informatics

Introduction to Robotics

Solution for arm configurations (cont.)

Adapted from this following variable can be defined:

 $ARM = \begin{cases} +1 & \text{RIGHT-arm} \\ -1 & \text{LEFT-arm} \end{cases}$ $ELBOW = \begin{cases} +1 & \text{ABOVE-arm} \\ 1 & \text{BELOW-arm} \end{cases}$ $WRIST = \begin{cases} +1 & \text{WRIST-down} \\ -1 & \text{WRIST-up} \end{cases}$

The complete solution for the inverse kinematics can be achieved by analysis of such arm configurations.

Inverse Kinematics for Manipulators - Technical difficulties during the development of control software

Introduction to Robotics

Technical difficulties for control software

Problem

- Software was hard-coded for a certain robot model / type.
- Software specialized on the robot skills and geometry
- Consequently, the extending and porting software to new hardware was difficult and time consuming

Solution

Develop a control software with the following capabilities

- Possibility to control low-level hardware properties
- Maximum portability to different platforms
- Maximum flexibility for fast programming of applications

Introduction to Robotics

Inverse Kinematics for Manipulators - A Framework for robots under UNIX: RCCL

Inverse Kinematics for Manipulators - A Framework for robots under UNIX: RCCL

Ability to control multiple robots

Introduction to Robotics

Inverse Kinematics for Manipulators - A Framework for robots under UNIX: RCCL

Motion description with position equations

Introduction to Robotics

Inverse Kinematics for Manipulators - A Framework for robots under UNIX: RCCL

Code sample for robot control in RCCL

```
#include <rccl.h>
#include "manex.560.h"
main()
        TRSF_PTR p, t;
                                                                  /*#1*/
        POS_PTR pos;
                                                                  /*#2*/
                                                                  /*#3*/
        MANIP *mnp;
        JNTS rcclpark:
                                                                  /*#4*/
        char *robotName:
                                                                  /*#5*/
                                                                  /*#6*/
        rcclSetOptions (RCCL_ERROR_EXIT);
        robotName = getDefaultRobot();
                                                                  /*#7*/
        if (!getRobotPosition (rcclpark.v, "rcclpark", robotName))
         { printf (''position 'rcclpark' not defined for robot\n'');
           exit(-1):
         3
                                                                  /*#8*/
        t = allocTransXyz ("T", UNDEF, -300.0, 0.0, 75.0);
        p = allocTransRot ("P", UNDEF, P X, P Y, P Z, xunit, 180.0);
        pos = makePosition ("pos", T6, EQ, p, t, NULL);
                                                                  /*#9*/
```


Introduction to Robotics

Inverse Kinematics for Manipulators - A Framework for robots under UNIX: RCCL

Code sample for robot control in RCCL (cont.)

<pre>mnp = rcclCreate (robotName, 0); rcclStart();</pre>	/*#10*/
<pre>movej (mnp, &rcclpark);</pre>	/*#11*/
<pre>setMod (mnp, 'c'); move (mnp, pos); stop (mnp, 1000.0);</pre>	/*#12*/ /*#13*/
movej (mnp, &rcclpark); stop (mnp, 1000.0);	/*#14*/
<pre>waitForCompleted (mnp); rcclRelease (YES);</pre>	/*#15*/ /*#16*/

Introduction to Robotics

Inverse Kinematics for Manipulators - A Framework for robots under UNIX: RCCL

Code sample for robot control in RCCL (cont.)

Introduction to Robotics

Inverse Kinematics for Manipulators - A Framework for robots under UNIX: RCCL

