

A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics

Sebastian Starke

Master Thesis Colloquium

TAMS, WTM Department of Informatics University of Hamburg

21.06.2016

Page 1 21.06.2016

A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics | 9starke@informatik.uni-hamburg.de

Contents

- 1. Introduction and Motivation
- 2. Problem Formalization
- 2. Related Work
- 3. Algorithmic Approach
- 4. Experiments and Results
- 5. Conclusion
- 6. Future Work

Master Thesis

Sebastian Starke

A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics | 9starke@informatik.uni-hamburg.de

Page 2 21.06.2016

Problem Statement

How to adjust a set of joints in order to move an end effector to reach a Cartesian configuration of position and/or orientation?

Kinematics

"Kinema" = "Movement / Motion"

 \rightarrow Field of classical mechanics

 \rightarrow Motion of rigid bodies by position, velocity, acceleration

 \rightarrow <u>No</u> consideration of physical dynamics (mass, force, torque, ...)

Sebastian Starke

A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics

Master Thesis

9starke@informatik.uni-hamburg.de

Page 3 21.06.2016


Applications

Robotics

→ Grasping and Object Manipulation
 → Bi-Pedal and Multi-Pedal Walking
 → Human Interaction
 → Manufacturing
 Games Industry
 → Believable characters

 \rightarrow Realistic motion \rightarrow Dynamic and flexible animations

Film Industry → *Motion Tracking*

Sebastian Starke

A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics

Master Thesis

9starke@informatik.uni-hamburg.de

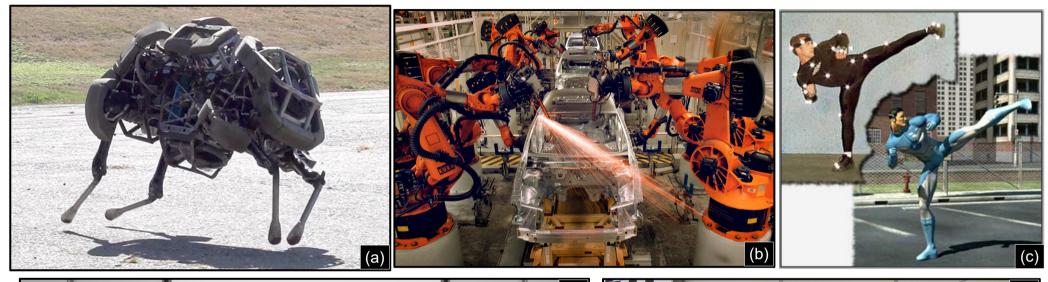
Page 4 21.06.2016

Challenges

- \rightarrow Zero up to infinite solutions
 - \rightarrow Geometric complexity
 - \rightarrow High dimensionality
- \rightarrow Suboptimal extrema and singularities
 - \rightarrow Joint constraints and types
 - \rightarrow Solution quality
- \rightarrow Accuracy versus Computation Time
 - \rightarrow Robustness and Reliability
 - \rightarrow Displacement between solutions
 - \rightarrow Self-Collision

. . .

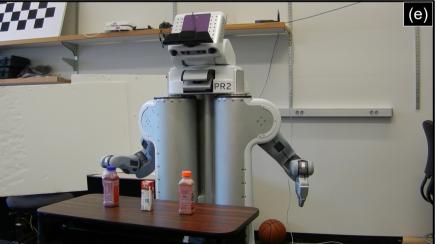
Sebastian Starke


tics 9starke@informatik.uni-hamburg.de

Page 5 21.06.2016

A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics

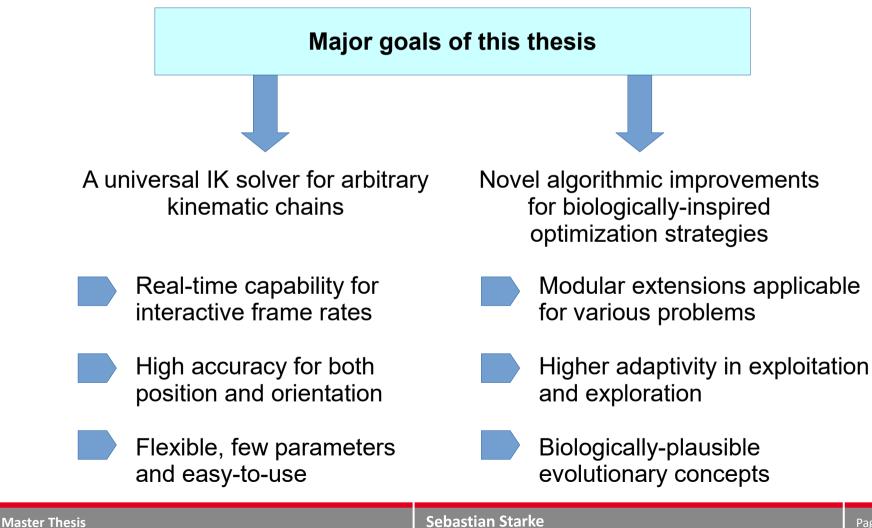
Master Thesis



without Foot IK

Master Thesis

Foot IK enabled


Sebastian Starke

9starke@informatik.uni-hamburg.de

Page 6 21.06.2016

A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics

A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics

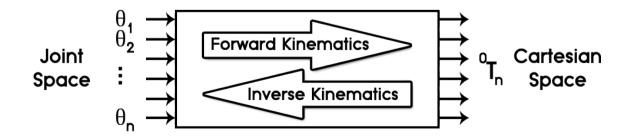
9starke@informatik.uni-hamburg.de

Page 7 21.06.2016

Problem Formalization

 $X \rightarrow$ Cartesian configuration of position and/or orientation $\theta \rightarrow$ Joint variable configuration

Forward Kinematics (FK)


 $\mathcal{X} = f(\theta)$

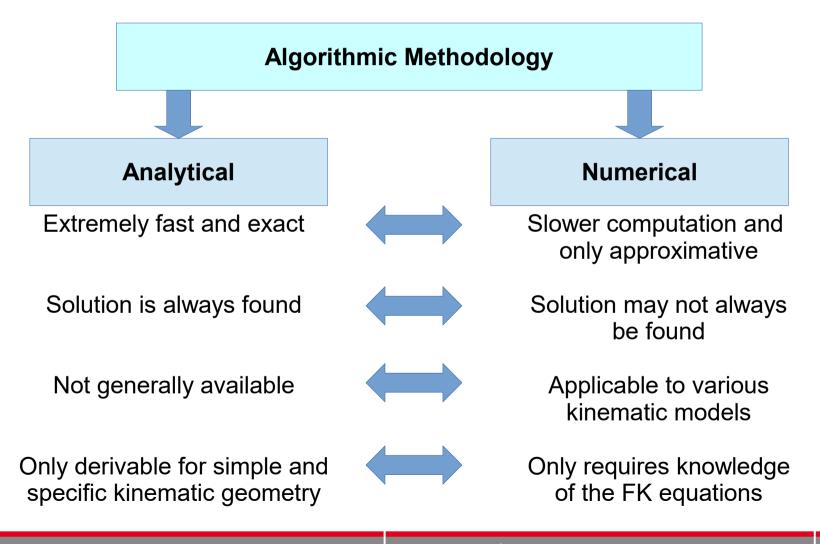
- \rightarrow Straightforward computation
- \rightarrow Unique solution
- → Only requires kinematic specifications and joint values

Inverse Kinematics (IK)

 $\theta = f^{-1}(\mathcal{X})$

- \rightarrow Highly non-trivial
- \rightarrow Complexity scales rapidly
- → Analytical versus Numerical

Master Thesis


Sebastian Starke

A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics | 9starke@informatik.uni-hamburg.de

Page 8 21.06.2016

Problem Formalization

Master Thesis

A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics

Sebastian Starke

9starke@informatik.uni-hamburg.de

Page 9 21.06.2016

Problem Formalization

 $Y \rightarrow Cartesian target of position and/or orientation$ $\mu \Theta \rightarrow W$ eighted joint variable change

Numerical IK Update

$$\theta' = \theta + \mu \Theta$$
 $d(f(\theta'), \mathcal{Y}) < d(f(\theta), \mathcal{Y})$

Pose Distance

$$d_p = w_t \hat{d}_t + w_r d_r$$

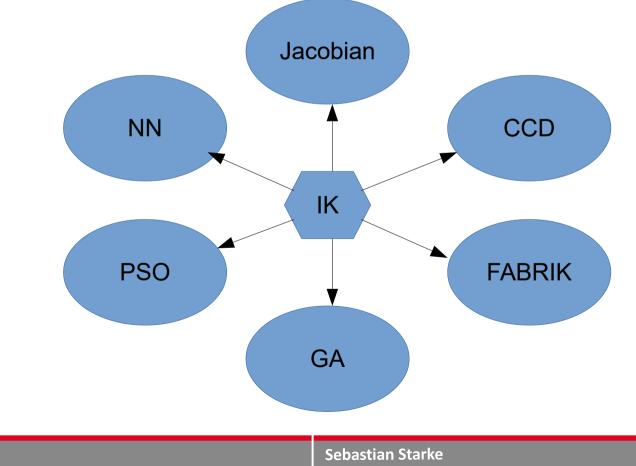
(Rebalanced) Translational Distance

 $\frac{\pi d_t}{\sqrt{1}} \qquad d_t = ||p_1 - p_2||$

Rotational Distance

$$d_r = q_1 \cdot q_2$$

 \rightarrow Length of the kinematic chain Λ \rightarrow Distance from base to end effector


Master Thesis

 $\hat{d}_t =$

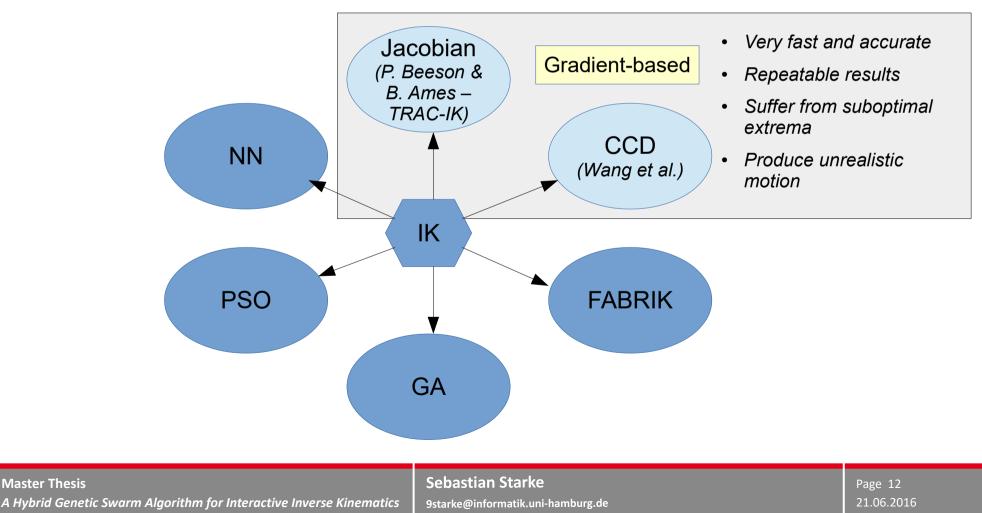
Sebastian Starke A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics 9starke@informatik.uni-hamburg.de

- \rightarrow IK researched over decades
- \rightarrow Very many different approaches with focus on numerical

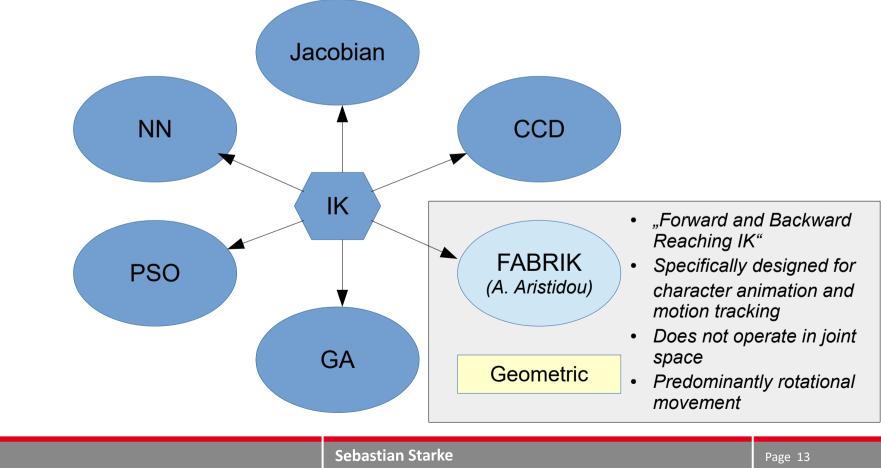
Page 11 21.06.2016

A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics

Master Thesis


9starke@informatik.uni-hamburg.de

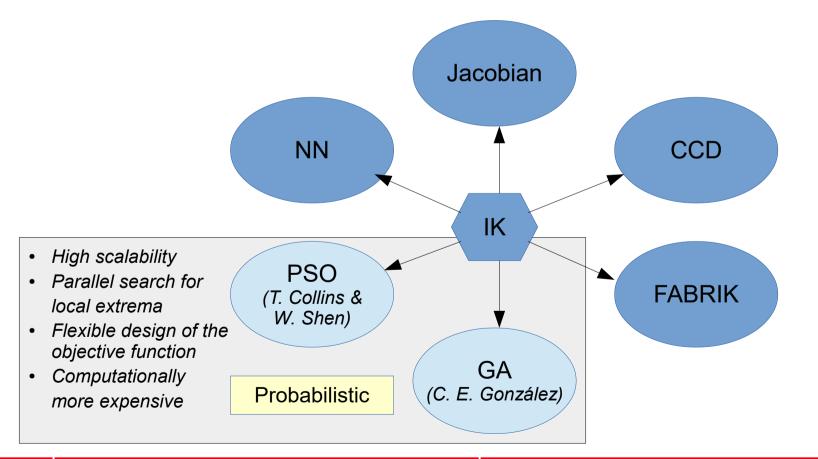
Master Thesis


Related Work

- \rightarrow IK researched over decades
- \rightarrow Very many different approaches with focus on numerical

- \rightarrow IK researched over decades
- \rightarrow Very many different approaches with focus on numerical

9starke@informatik.uni-hamburg.de


21.06.2016

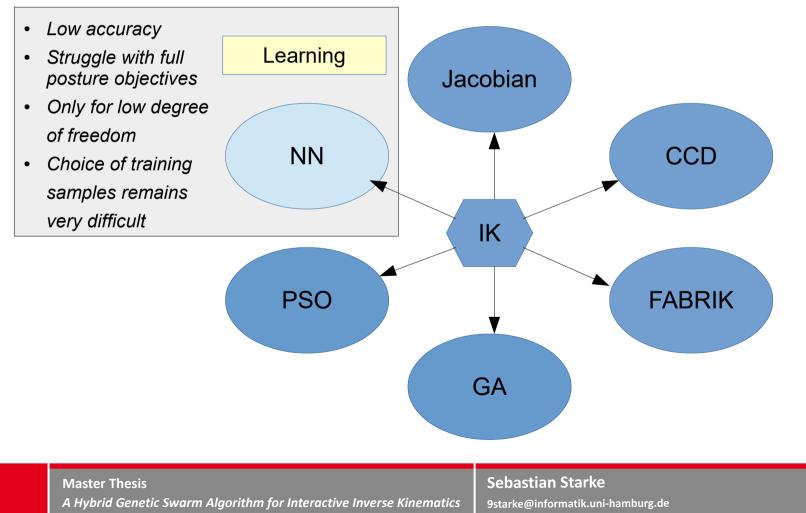
A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics

Master Thesis

- \rightarrow IK researched over decades
- \rightarrow Very many different approaches with focus on numerical

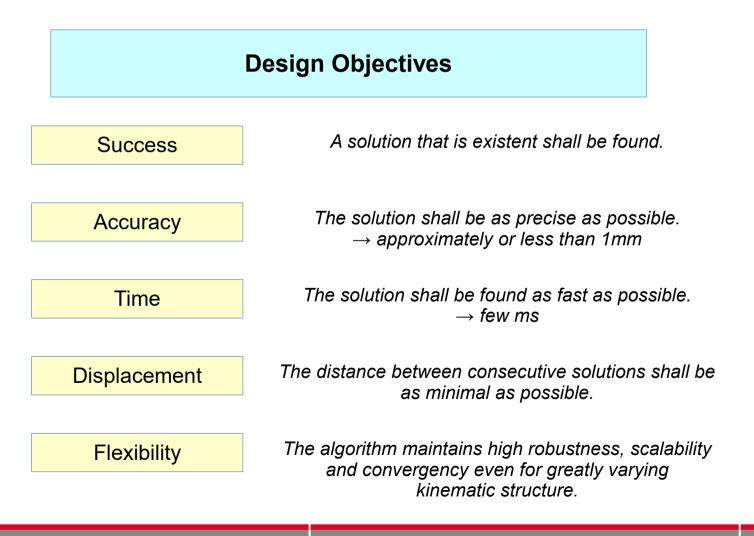
Master Thesis

Sebastian Starke


9starke@informatik.uni-hamburg.de

A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics

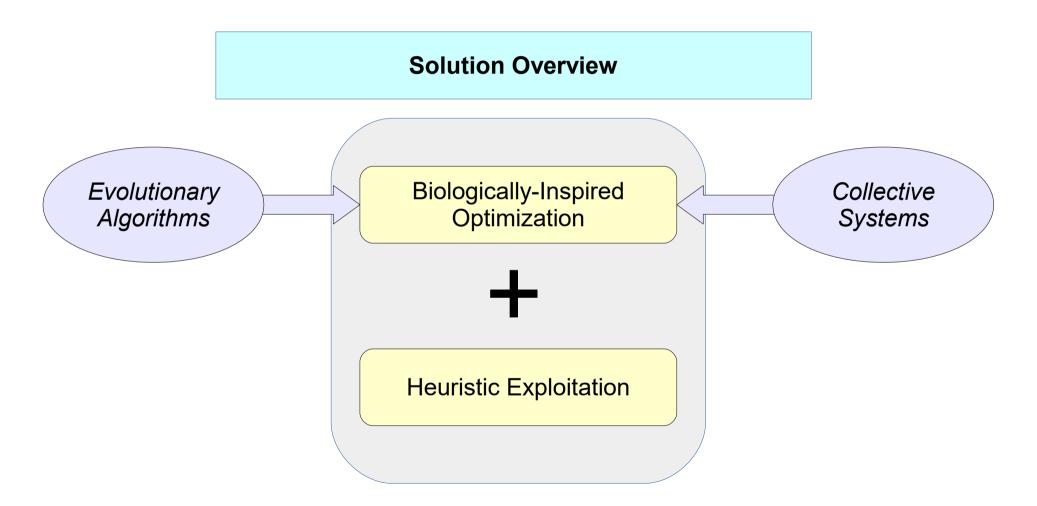
Page 14 21.06.2016



- \rightarrow IK researched over decades
- \rightarrow Very many different approaches with focus on numerical

Page 15 21.06.2016

A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics


Master Thesis

Sebastian Starke

9starke@informatik.uni-hamburg.de

Page 16 21.06.2016

A Hybrid Genetic Swarm Algorithm for Inte	ractive Inverse Kinematics

Master Thesis

Sebastian Starke

9starke@informatik.uni-hamburg.de

Page 17 21.06.2016

Genetic Algorithms

- Developed by J. F. Holland
- Inspired by the theory of **natural evolution** as formulated by *C. Darwin*
- "Survival of the fittest" and "Diversity drives change"
- Group of individuals within a population that evolves over many generations
- Selection, Recombination and Mutation

Particle Swarm Optimization

- Developed by J. Kennedy and R. Eberhart
- Inspired by social emerging behaviour of bird flocks and schools of fish
- Rather simple organisms ("particles") collectively solve a complex problem
- Velocity and direction update according to success of neighbouring particles

Similarities

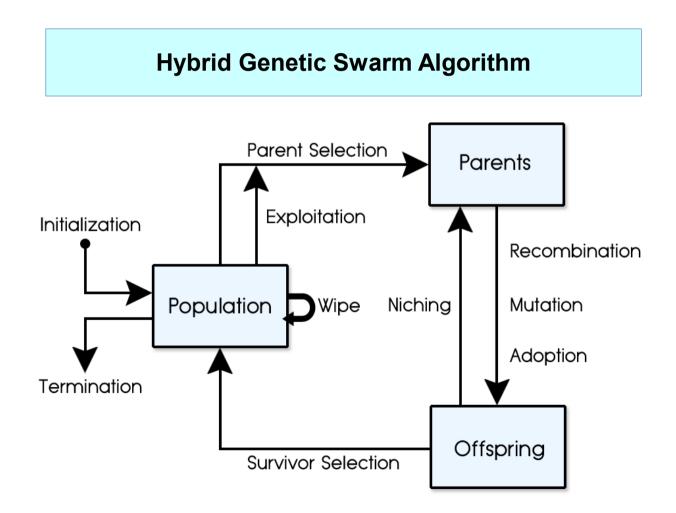

- \rightarrow Search space exploration by a group of organisms
 - \rightarrow Solution quality determined by fitness function
 - \rightarrow Simultaneous search for multiple local extrema

 \rightarrow High robustness and scalability as well as effectiveness for multi-objective optimization

A.E. Eiben and J. E. Smith – *Introduction to Evolutionary Computing*, Springer, 2003 D. Floreano and C. Mattiussi – Bio-Inspired Artificial Intelligence, MIT Press, 2008

D. Horoano and O. Matadosi Dio mopilea Artinola intelligence, with 11005, 2000			
Master Thesis	Sebastian Starke	Page 18	
A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics	9starke@informatik.uni-hamburg.de	21.06.2016	

Master Thesis


Sebastian Starke

Page 19 21.06.2016

A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics

9starke@informatik.uni-hamburg.de

Master Thesis

Sebastian Starke

Page 20 21.06.2016

A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics 9starke@informatik.uni-hamburg.de

Encoding

Genotype $x \rightarrow$ n-dimensional joint variable configuration

$$x = \left(x_1 \mid x_2 \mid x_3 \mid \dots \mid x_{n-1} \mid x_n \right)$$

→ Independent of joint types (revolute, prismatic, ...)
 → Joint limits directly incorporated (clipping)
 → Allows algebraic vector calculations

Master Thesis

Sebastian Starke

Page 21 21.06.2016

A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics | 9starke@informatik.uni-hamburg.de

Fitness Function

<u>ldea</u>

Use randomized weight w for multi-objective optimization

→ Models dynamic environment

→ Determines individuals that are *"most responsive to change"*

 \rightarrow Biologically plausible

Phenotype $X \rightarrow$ Cartesian configuration obtained by forward kinematics function *f*

 $\mathcal{X} = f(x)$

Fitness function Ω measures fitness π under evolutionary target Y

$$\pi = \Omega(\mathcal{X}) \qquad \Omega : \begin{cases} d_t(\mathcal{X}, \mathcal{Y}) & Position \\ d_r(\mathcal{X}, \mathcal{Y}) & Orientation \\ w \hat{d}_t(\mathcal{X}, \mathcal{Y}) + (1 - w) d_r(\mathcal{X}, \mathcal{Y}) & Pose \end{cases}$$

Master Thesis

Sebastian Starke

Page 22 21.06.2016

<u>A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics</u> 9starke@informatik.uni-hamburg.de

Parent Selection

Rank-based parent selection from mating pool Γ

$$\mathcal{S}_{\mathcal{P}}: \mathcal{P}_{\{1,2\}} \leftarrow p(\Gamma_i) = \frac{\gamma - i + 1}{\sum_{i=1}^{\gamma} i}$$

 \rightarrow Independent of fitness value distribution

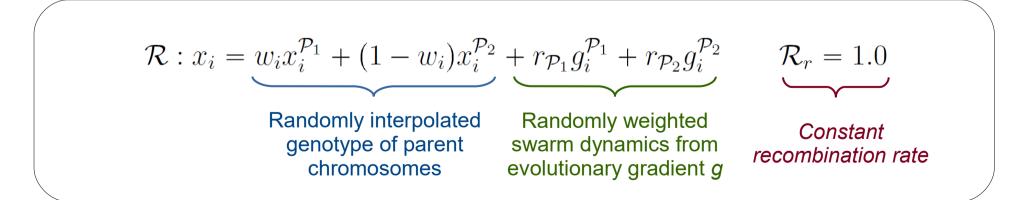
 \rightarrow Sensitive to local extrema

 \rightarrow Scales well with population size

 \rightarrow No parameters required

Master Thesis

Sebastian Starke


A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics | 9starke@informatik.uni-hamburg.de

Recombination

Idea Let offspring dive a little deeper into the direction that caused improvement within their parents

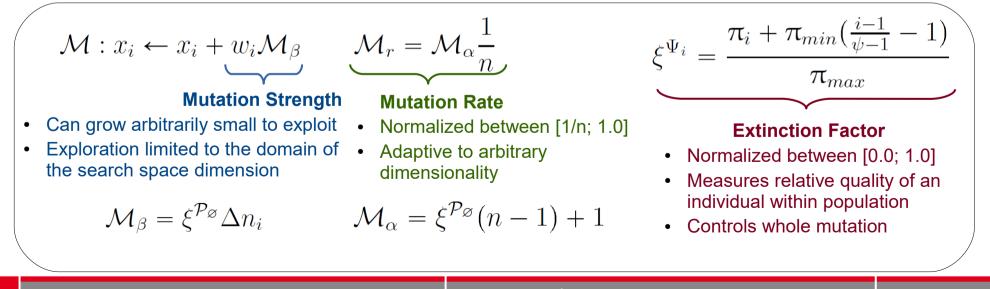
→ Heuristic evolutionary gradients for continuous evolution dynamics
 → Evolutionary gradient = amount of change during mutation and adoption (see later)

Master Thesis

Sebastian Starke

A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics 9starke@informatik.uni-hamburg.de

Page 24 21.06.2016


Mutation

Motivation

Fixed mutation rate and strength not suitable for arbitrary kinematic models

<u>ldea</u>

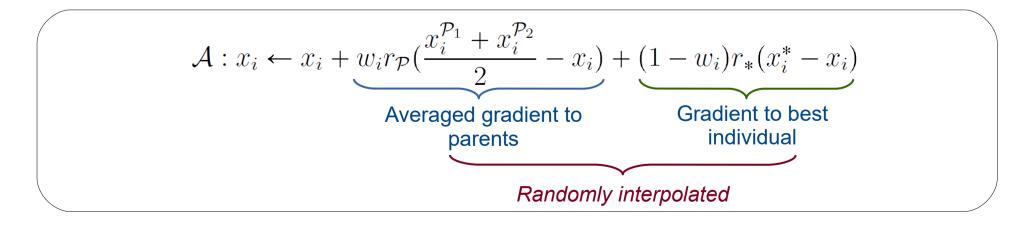
 \rightarrow Let the population itself determine the required amount of **exploitation** and **exploration** by an **extinction rate** that **controls mutation** independent from the problem dimensionality

Master Thesis

A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics

Sebastian Starke

nematics 9starke@informatik.uni-hamburg.de


Page 25 21.06.2016

Adoption

Idea Let offspring adopt characteristics of parents and most successful performing prototypes

 \rightarrow Natural behaviour over lifetime \rightarrow Dynamic search space exploration \rightarrow Very similar to PSO

Sebastian Starke

9starke@informatik.uni-hamburg.de

Page 26 21.06.2016

A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics

Master Thesis

Niching

Pre-Selection

→ Immediately remove any parent whose fitness is worse than its offspring

Goals

 \rightarrow Encourages to keep track of multiple local extrema \rightarrow Avoid premature convergency

A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics

Master Thesis

Sebastian Starke

9starke@informatik.uni-hamburg.de

Page 27 21.06.2016

Survivor Selection

Age-based with elitism

 \rightarrow Merge all elites and newly generated offspring

Goals

→ Let the fittest individuals *(elites)* survive in order not to lose the current evolutionary progress

Master Thesis A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics

Sebastian Starke

9starke@informatik.uni-hamburg.de

Page 28 21.06.2016

Exploitation

Motivation

Increase convergency by further improvement of already good solutions

Approach

Iterative cyclic exploitation of **elite** individual genotypes

1. Randomly modify each gene by current fitness value into both domain directions

- 2. Take modification that scored improvement
- 3. Calculate averaged fitness value

Master Thesis

Sebastian Starke

Page 29 21.06.2016

A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics 9starke@informatik.uni-hamburg.de

Initialization

Biased population

1 individual \rightarrow currently assigned joint variable configuration

All others \rightarrow randomly generated chromosomes

Termination

Determine whether desired accuracy in

position and orientation

is satisfied by the solution

Wipe

Problem

- Many local extrema within search space
- Escape from dead-end paths in good extrema might take too long
- · Restart might be more efficient

Master Thesis

Approach

- Perform wipe (restart) of population if solution
 - \rightarrow could not be improved within last generation and
 - \rightarrow can not be improved by exploitation

Sebastian Starke

A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics

atics 9starke@informatik.uni-hamburg.de

Page 30 21.06.2016

Solution Filtering

Motivation

Real-time interactive applications \rightarrow best solution so far is required

Problem

Randomized weights might replace elites by constant dynamics

Solution

Determine joint variable solution by equally weighted objective function

 \rightarrow Remember best solution in history \rightarrow Let evolution continue approximation underneath

Master Thesis A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics

Sebastian Starke

9starke@informatik.uni-hamburg.de

Page 31 21.06.2016

Environmental Setup

Laptop – ASUS G751JY Intel Core i7-4720HQ (2.6 – 3.4 GHz) (Code running at single core implementation)

Qunity + URDF + Kinematic + IK Importer + Joint + Solver

Master Thesis

Sebastian Starke

Page 32 21.06.2016

A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics 9starke@informatik.uni-hamburg.de

Environmental Setup

🖲 🗹 Kinematic Joint	(Script)	🛐 🌣,
Туре	Revolute	\$
Connection	X 0 Y 0 Z 0	
Axis Orientation	X 0 Y 0 Z 0	
X Motion		
State	Free	\$
Max Velocity	2	
Max Acceleration	2	
Lower Limit	-0.25	
Upper Limit	1	
Target Value	0	
Y Motion		
State	Free	\$
Max Velocity	2	
Max Acceleration	2	
Lower Limit	-0.5	
Upper Limit	1.5	
Target Value	0	
Z Motion		
State	Free	\$
Max Velocity	2	
Max Acceleration	2	
Lower Limit	-1	
Upper Limit	0.75	
Target Value	0	

👍 🗹 IK Solver (Script) 🛛 🔯		2
Solver		
Target	↓None (Transform)	0
Maximum Frame Time	0.001	
Objective	Pose	\$
Maximum Error		
Position	0.001	
Orientation	0.01	
Algorithm		
Population Size	12	
Elites	4	
Active Joints		
Torso (2 DoF)	\checkmark	
Shoulder (2 DoF)	\checkmark	
Elbow (1 DoF)		
Degree of Freedom: 5		

Sebastian Starke

9starke@informatik.uni-hamburg.de

Page 33 21.06.2016

A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics

Master Thesis

Environmental Setup

Master Thesis A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics

Sebastian Starke 9starke@informatik.uni-hamburg.de Page 34 21.06.2016

- Live Demos in Unity -

- 1 https://www.youtube.com/watch?v=dRCY848mSLI
- 2 https://www.youtube.com/watch?v=DZFeU_WZIhI
- 3 https://www.youtube.com/watch?v=8-kw7RsuD6A
- 4 https://www.youtube.com/watch?v=OXtGbrl7qUQ
- 5 https://www.youtube.com/watch?v=Gu0CBf18Zf0
- 6 https://www.youtube.com/watch?v=a9QPXud-j0Q

Master Thesis

Sebastian Starke

A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics

Page 35 21.06.2016

1. Parameters

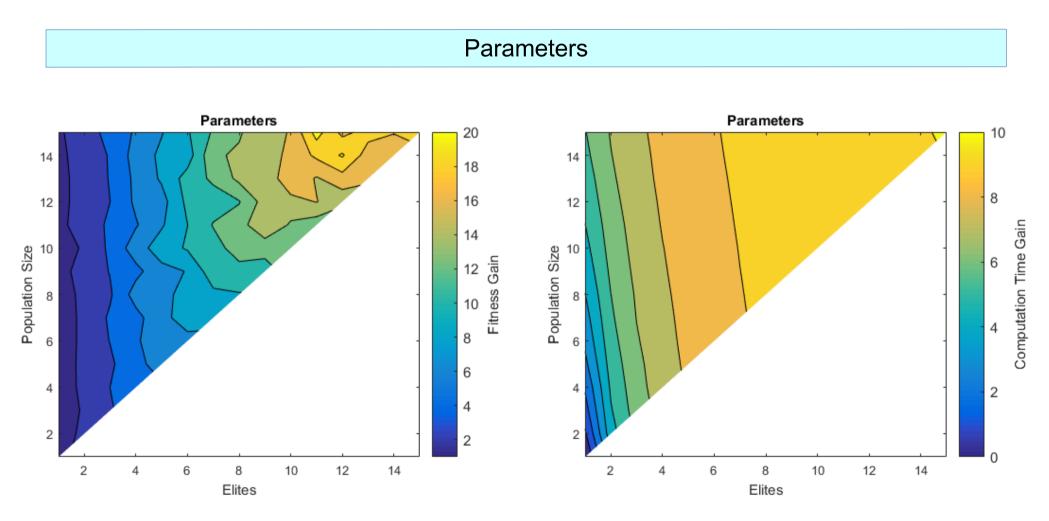
 \rightarrow Balancing of population size and elites

 \rightarrow UR5 Arm

2. Selective Study

- \rightarrow All versus Nothing
- \rightarrow Selectively taking away improvements
- \rightarrow UR5 Arm

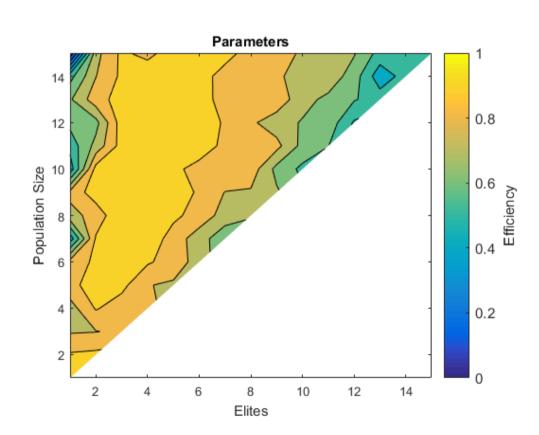
Master Thesis A Hybrid Genetic 3. Performance Study


- → Success, Accuracy, Time, Displacement, Flexibility
- \rightarrow 8 Models + 3 high dimensional chains

4. Data Comparison

All samples generated as random poses or continual trajectories of joint space configurations

	Sebastian Starke	Page 36
ic Swarm Algorithm for Interactive Inverse Kinematics	9starke@informatik.uni-hamburg.de	21.06.2016


Master Thesis

Sebastian Starke

A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics 9starke@informatik.uni-hamburg.de

Page 37 21.06.2016

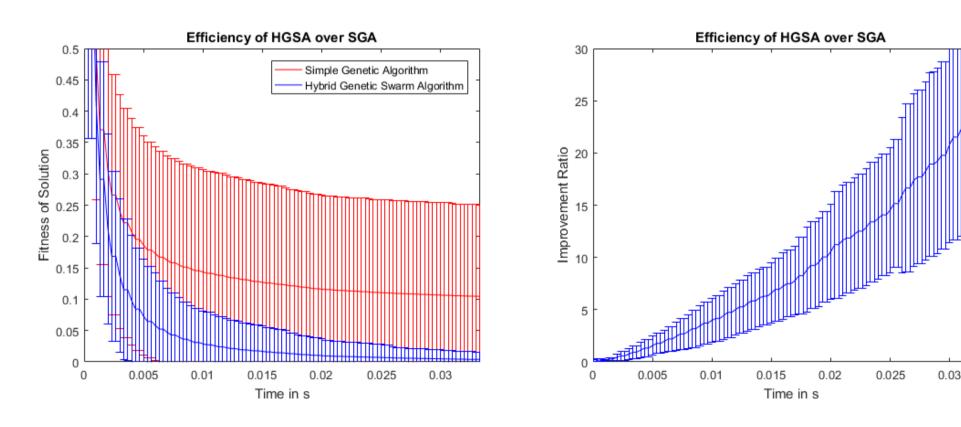
Reasonable parameter choice

Population Size \rightarrow 12

Elites \rightarrow 4

Master Thesis

Sebastian Starke

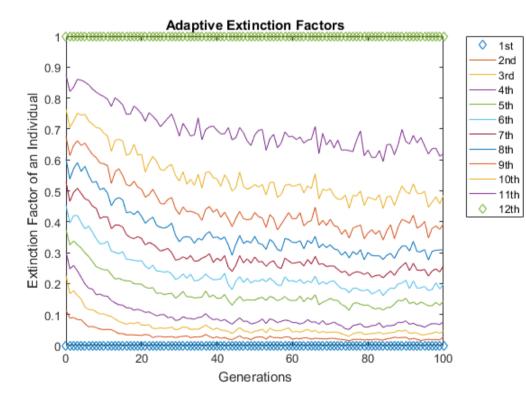

Parameters

CS 9starke@informatik.uni-hamburg.de

Page 38 21.06.2016

Selective Study – All versus Nothing

Master Thesis


Sebastian Starke

9starke@informatik.uni-hamburg.de

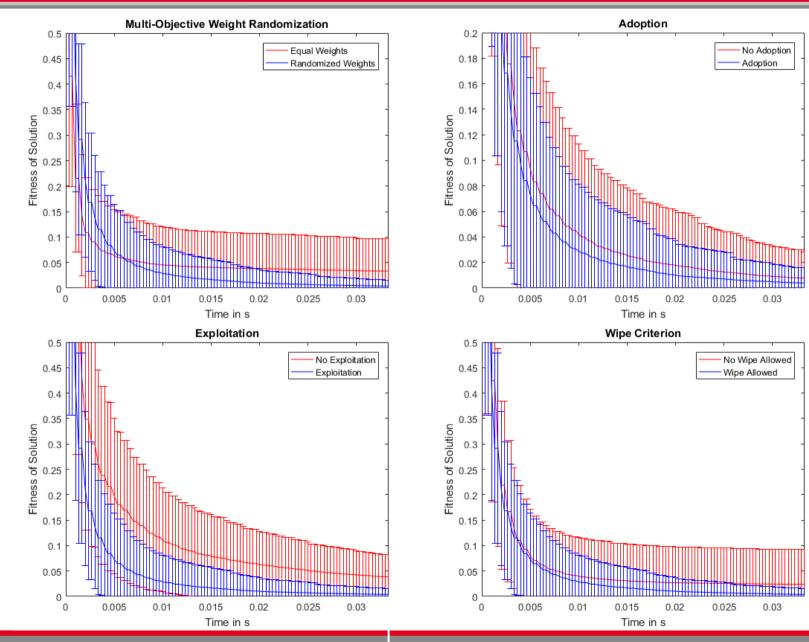
Page 39 21.06.2016

Selective Study – Extinction Factors

 Extinction factors adapt to the current evolutionary progress

• Maintains explorative diversity

• Ensures local extrema sensitivity


Master Thesis

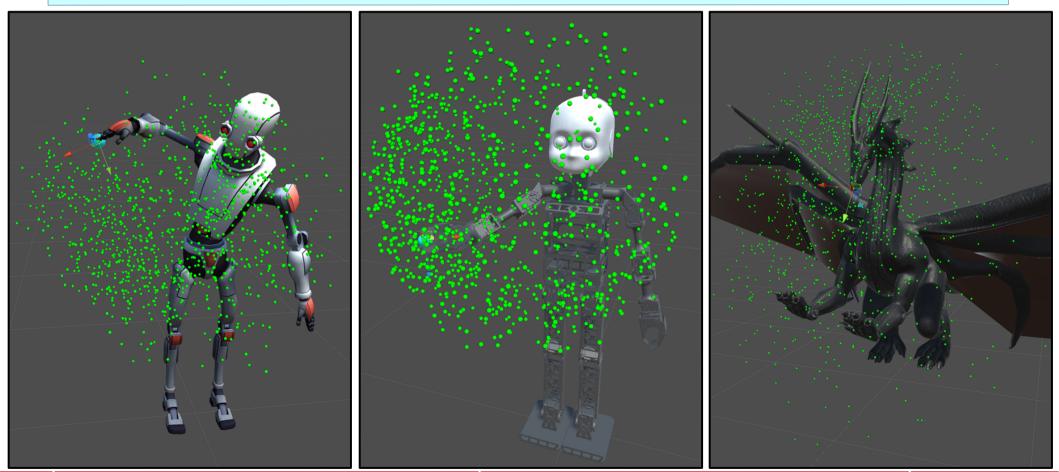
Sebastian Starke

9starke@informatik.uni-hamburg.de

Page 40 21.06.2016

Master Thesis

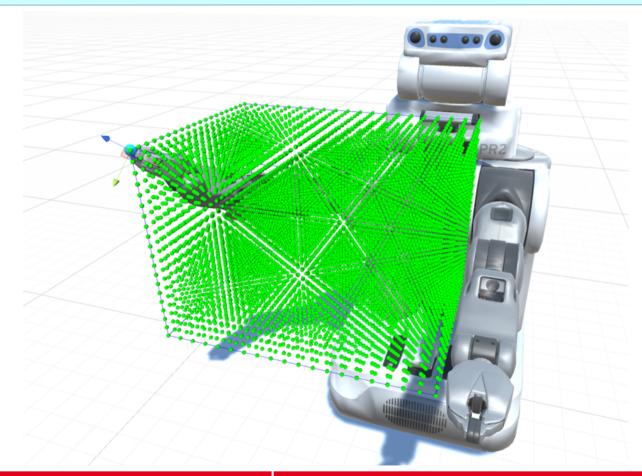
A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics


Sebastian Starke

9starke@informatik.uni-hamburg.de

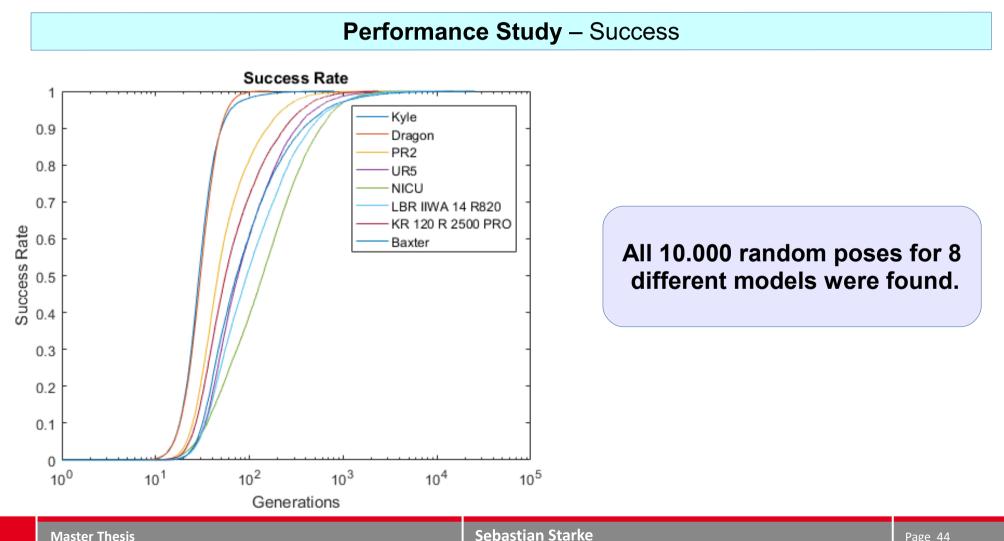
Page 41 21.06.2016

Performance Study – Success (Pose Objective)


Master Thesis A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics

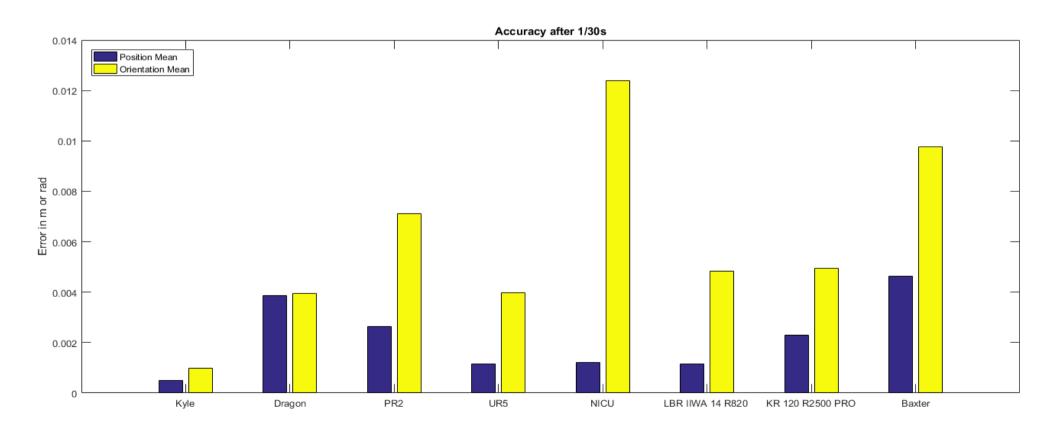
Sebastian Starke 9starke@informatik.uni-hamburg.de

Page 42 21.06.2016


Performance Study – Success (Position Objective)

Master ThesisSoA Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics9s

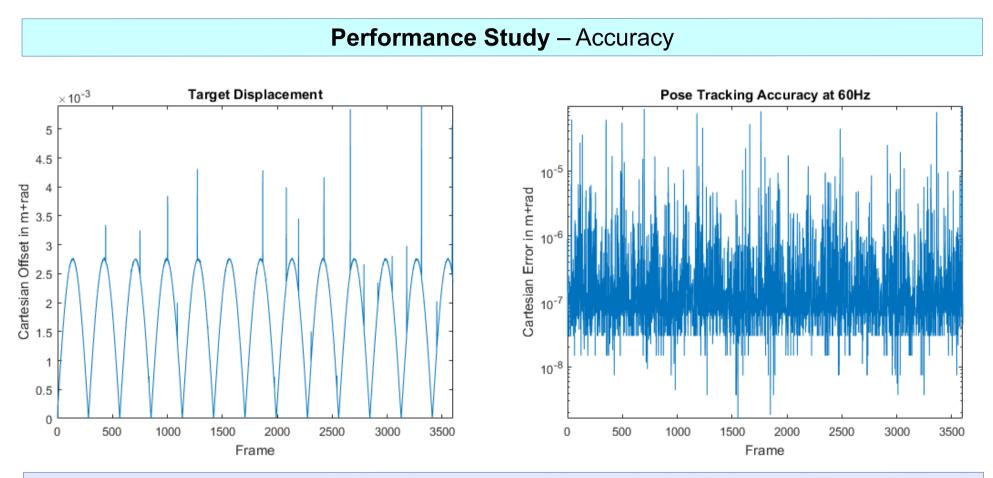
Sebastian Starke 9starke@informatik.uni-hamburg.de Page 43 21.06.2016


A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics

9starke@informatik.uni-hamburg.de

Page 44 21.06.2016

Performance Study – Accuracy


Master Thesis

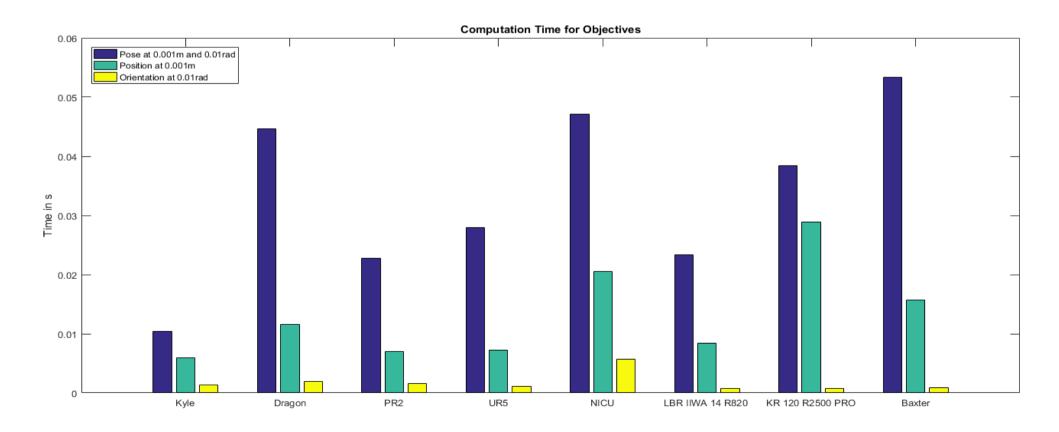
Sebastian Starke

A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics 9starke@informatik.uni-hamburg.de

Page 45 21.06.2016

→ Pose tracking with 10^(-6) cartesian error (sum of position and orientation errors)

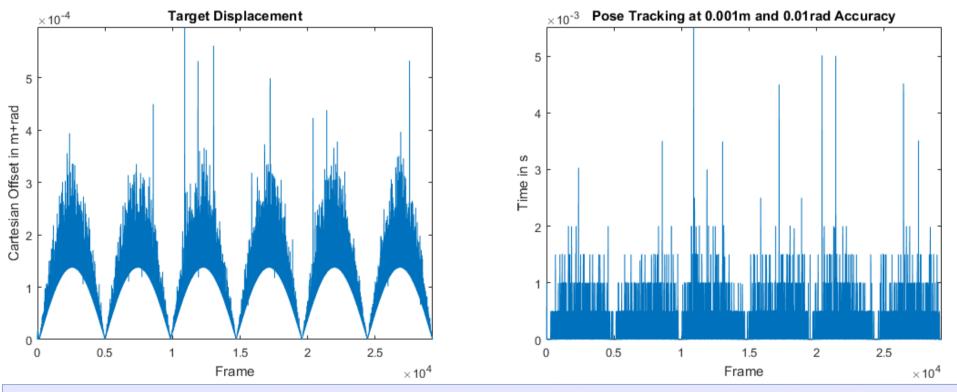
Master Thesis


Sebastian Starke

9starke@informatik.uni-hamburg.de

Page 46 21.06.2016

Master Thesis


Sebastian Starke

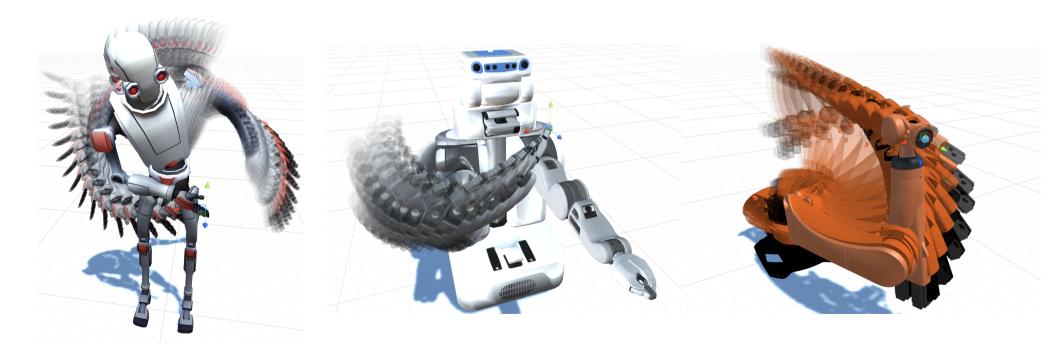
e Kinematics 9starke@informatik.uni-hamburg.de

Page 47 21.06.2016

Performance Study – Time

\rightarrow Accurate pose tracking at 1000-2000 Hz

Master Thesis

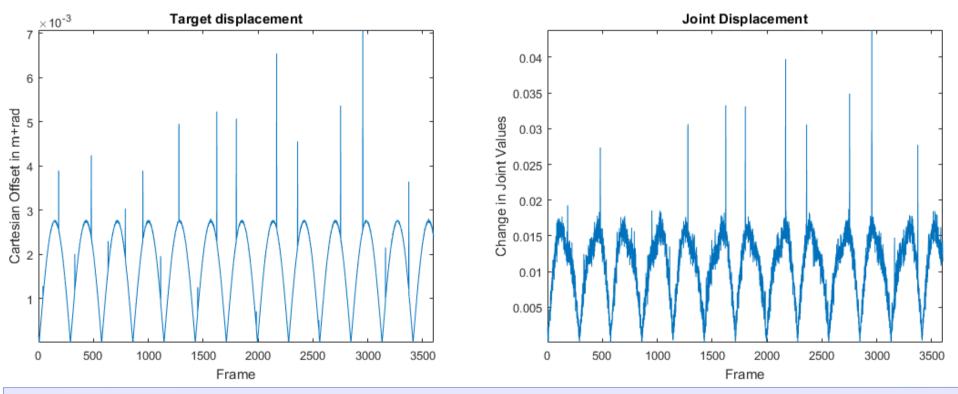

Sebastian Starke

9starke@informatik.uni-hamburg.de

Page 48 21.06.2016

Performance Study – Displacement

Master Thesis

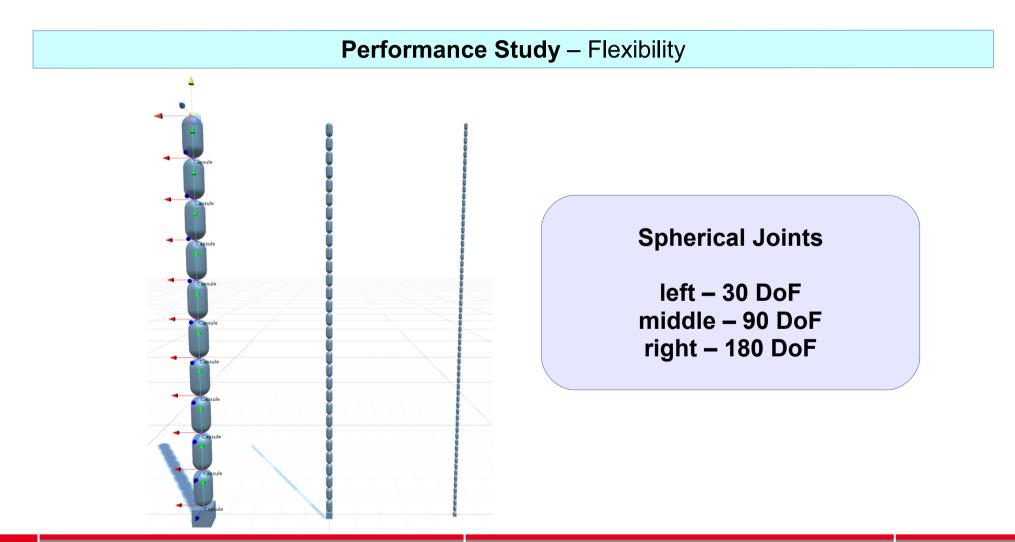

Sebastian Starke

Page 49 21.06.2016

A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics 9starke@informatik.uni-hamburg.de

Performance Study – Displacement

\rightarrow Responsive shape-resembling joint value change

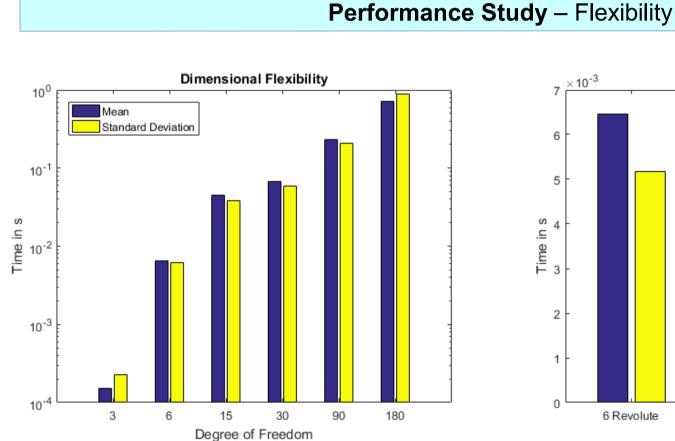

Master Thesis

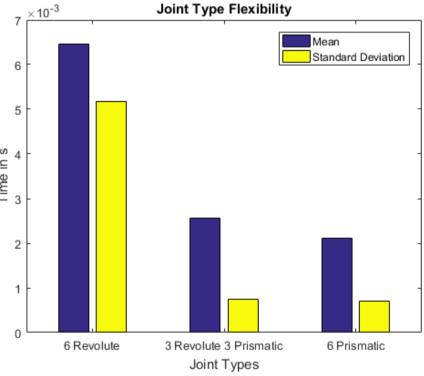
Sebastian Starke

9starke@informatik.uni-hamburg.de

Page 50 21.06.2016

 Master Thesis
 Se


 A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics
 9sta


Sebastian Starke

9starke@informatik.uni-hamburg.de

Page 51 21.06.2016

Master Thesis

Sebastian Starke

9starke@informatik.uni-hamburg.de

Page 52 21.06.2016

Data Comparison Reported efficiency in literature on various robot models

	Jacobian	CCD	FABRIK	GA	PSO	NN	HGSA
Accuracy <i>(m</i> <i>rad)</i>	0.00001	0.00001	0.0001	0.001	0.001	0.01	0.001
Time (ms)	<1 - 10	1 - 100	10-50	50 - 500	30 - 600	-	10 - 60
Robustness	Medium	Medium	Low	High	Medium	Low	High
Scalability		_	+	+	+ +		+ +

Master Thesis	Sebastian Starke
A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics	9starke@informatik.uni-hamburg.de

Page 53 21.06.2016

Data Comparison Orocos' KDL vs TRAC-IK vs HGSA

	Orocos' KDL (no joint limits)		TRAC-IK (Beeson & Ames, 2015)		HGSA	
	Success	Time	Success	Time	Success	Time
PR2	83.14%	1.37ms	99.84%	0.59ms	100%	22.75ms
LBR IIWA	37.71%	3.37ms	99.63%	0.56ms	100%	23.39ms
UR5	35.88%	3.30ms	99.55%	0.42ms	100%	27.88ms
Baxter	61.07%	2.21ms	99.17%	0.60ms	100%	53.33ms

Scalability?

Joint displacement due to random restarts?

9starke@informatik.uni-hamburg.de

Master Thesis

Sebastian Starke

Page 54 21.06.2016

Data Comparison PASO vs HGSA

	PASO (Collins & Shen, 2016)	HGSA
	Time	Time
30 DoF	1.57s	0.066s
90 DoF	7.46s	0.233s
180 DoF	37.03s	0.717s

Master Thesis

Sebastian Starke

Page 55 21.06.2016

A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics 9starke@informatik.uni-hamburg.de

Conclusion

General

- Universal IK solver for kinematic chains
- Arbitrary joint types, link geometry and degree of freedom
- Algorithm based on biologically-inspired evolutionary and collective concepts

Algorithmic Improvements				
Extinction Factors Swarm Adoption		Heuristic Exploitation		
Multi-Objective We	ight Randomization	Wipe Criterion		

Results

- 100% success rate at high accuracy and real-time capability
- Minimal joint displacement and high scalability
- Maintains performance under various kinematic models
- Can compete with the State-of-the-Art

Master Thesis

Sebastian Starke

A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics 9starke@informatik.uni-hamburg.de

Page 56 21.06.2016

Future Work

Extinction Factor Study

 \rightarrow Analyse loss by adaptive mutation control in contrast to model-specific optimized parameters

Parallel GPU / Multi-Core Implementation

 \rightarrow >95% of time is required by fitness calculation (*FK* equations)

 \rightarrow Reimplement the algorithm in C++/Python

→ Efficient parallel instead of sequential single-core fitness calculation

Multiple End Effectors

 \rightarrow Currently, only serial kinematic chains are supported \rightarrow Extend algorithm to solve for multiple end effectors simultaneously

Path Planning

 \rightarrow Extend algorithm for path-planning tasks

Collision Avoidance

 \rightarrow Incorporate link geometry to filter solutions that would result in collisions

Neural Learning

 \rightarrow Learn mappings from previously evolved joint configurations and trajectories

Master Thesis

Sebastian Starke

Page 57

21.06.2016

A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics 9starke@informatik.uni-hamburg.de

References

S. Starke – A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics, Master Thesis, 2016

A.E. Eiben and J. E. Smith - Introduction to Evolutionary Computing, Springer, 2003

D. Floreano and C. Mattiussi - Bio-Inspired Artificial Intelligence, MIT Press, 2008

A. Aristidou and J. Lasenby – FABRIK: A fast, iterative solver for the Inverse Kinematics problem, volume 73, pages 243-260. Graphical Models, 2011

T. Collins and W. Shen – PASO: An Integrated, Scalable PSO-based Optimization Framework for Hyper-Redundant Manipulator Path Planning and Inverse Kinematics. Information Sciences Institute Technical Report, 2016

Li-Chun Tommy Wang and Chih Cheng Chen – A combined optimization method for solving the inverse kinematics problems of mechanical manipulators, volume 7, pages 489{499. IEEE Transactions on Robotics and Automation, 1991

C. E. Gonzalez Uzcategui – A Memetic Approach to the Inverse Kinematics Problem for Robotic Applications. Doctoral Thesis, Carlos III University of Madrid, 2014

P. Beeson and B. Ames – TRAC-IK: An open-source library for improved solving of generic inverse kinematics. In Proceedings of the IEEE RAS Humanoids Conference, Seoul, Korea, November 2015

Online – https://bitbucket.org/traclabs/trac_ik.git (20.06.2016)

Online - http://www.unity3d.com (20.06.2016)

(a) Online – http://spectrum.ieee.org/image/MjM4NDQzNA (20.06.2016)

(b) Online – http://core0.staticworld.net/images/article/2013/12/kuka-robot-arms-at-work-100155065-orig.jpg (20.06.2016)

(c) Online – http://www.batou.fr/wp-content/uploads/motion_capture_1.jpg (20.06.2016)

(d) Online – http://www.batou.fr/wp-content/uploads/motion_capture_1.jpg (20.06.2016)

(e) Online – https://sensor.cs.washington.edu/robotbci/images/PR2.jpg (20.06.2016)

Master Thesis

Sebastian Starke

Page 58 21.06.2016

A Hybrid Genetic Swarm Algorithm for Interactive Inverse Kinematics 9starke@informatik.uni-hamburg.de