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Manipulation: Goals

Manipulation consists of two separable tasks:
» Endeffector Positioning (manipulation planning)

» Endeffector Application (e.g. grasping)

In general manipulators look like this:

KUKA LWR 4+ [7]
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Manipulation: Goal

Goals and Problem

Computing a movement for a manipulator’s initial configuration so that
its endeffector reaches a required target position.

How can that problem be computed?
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More Difficulties

Goals and Problem

Additionally many factors need to be considered:

» Obstacle detection & collision avoidance

v

Cost reduction <> efficient manipulation

v

Moving manipulator or object (or both)

v

Physical constraints: weight, speed, momentum, range

v

Technical constraints: power, latency, accuracy, singularities

For now we focus on the first two. . .
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Configuration Space

The position (and orientation) of the Endeffector regarding to the base depends
on:

» Constant Device Features (~distances & angles between links and joints)

» Variable Joint Configuration (=motor settings of the joints)

—If constant device features are known, the manipulation problem corresponds to
a path search in configuration space.
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Configuration Space

Configuration Space

v

The Configuration Space Cspace defines all configurations of a manipulator.

v

For a N-DOF-Manipulator Cspace has N dimensions, each dimension
representing a joint.

v

A configuration vector g contains all joint settings of the manipulator.

v

The reachable configuration space (in regards to range, obstacles,
singularities. .. ) is called Cpee
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Kinematics

» Kinematics is the mathematical field of the description of mechanical motion.

» Kinematics is used to compute positions and motions of the endeffector into
Cspace and back.

forward K

Configuration Vector @on of Ende@

inverse K
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Manipulation Planning in a Nutshell

1. Determine the current configuration vector A of the manipulator.
2. Find a configuration vector B for the Endeffector's target position.
3. Find a feasible path between configuration vectors A and B in Cspace.
4. Move the manipulator’s joints according to that path, which results in a
continuous motion in topological space.
But:

> A perfect solution can not be computed - Cspace is too big and there might
be no or infinite optimal paths.
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Approaches

Planning
Approaches

Roadmap Techniques
Cell-Decomposition Techniques
Artificial Potential Methods
Probabilistic Roadmaps

b=

All approaches aim to create a searchable representation of Cgee.
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In general Cpee is best to be described as a graph.

Planning

— Manipulation planning can be performed by a shortest path graph search like Approaches
Dijkstra or A*.

Graph creation and search algorithms can be tuned for:
> distance
> safety
> speed
> accuracy

» completeness
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Roadmap Techniques

Roadmap Techniques

Idea:

Describe the N-Dimensional configuration space Cgee as a connectivity graph and
perform a search for a feasible path between two configurations.

13/35



Roadmap Techniques: Visibility Graph o

Applications
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Figure: Example Visibility Graph casparetto et al. [16], p. 8

— All paths are close to obstacles.
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Roadmap Techniques: Voronoi Diagrams
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Figure: Example of a Voronoi Diagram casparetto et al. [16], p. 9

— Paths are as far away from obstacles as possible.
15/35



Cell-Decomposition

Cell-Decomposition

Idea:

Compute a tree of paths in Cgee by disabling all obstacles from a graph
representation of Cspace.
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Exact Cell-Decomposition

(b)

a subdivision of space into
numbered polygons

l|} b connectivity graph

c regions to be crossed
d path

Figure: Exact Cell-Decomposition Gasparetto et al. [16], p. 10

Cell-Decomposition
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Approximate Cell-Decomposition

To generate a connectivity graph for a required accuracy:

1. Divide Cspace into 2" equal sized cells.

2. Check if cells are free or blocked by obstacles.
3. If a cell is only partially blocked by an obstacle, decompose recursively.

Figure: 2-Dimensional Cell-Decomposition Gasparetto et al. [16], p. 10
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Cell-Decomposition: Tree-Representation

» The corresponding graph of the cell decomposition is a tree of adjacent

configuration vectors.

» The motion is therefore specified as a path in that tree and can be computed

by graph search techniques.

Agﬁﬁ%

x/ AN

[ Mixed cell
M Full cell

D Empty cell

Cell-Decomposition

[ Mixed cell
W Full cell
[ Empty cell

Figure: Approximate Cell-Decomposition Gasparetto et al. [16], p. 11
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Artificial Potential Methods
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Idea:
Cspace is defined as a potential field.
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— The motion is lead by the path of the highest potential along the field.
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Probabilistic Roadmaps

Idea:

Probabilistic Roadmaps

(Drastically) reduce complexity of Roadmap computation by probabilistic
algorithms.
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Probabilistic Roadmap

Find obstacles and surround with connected nodes.
Add random nodes to Cgee and connect to closest existing nodes.

Repeat step 2 until a density criterion is reached. Rl g

b=

Perform graph search algorithm on created roadmap.

This process can be optimized, e.g. by adding more nodes at areas with coarse
connectivity.
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Probabilistic Roadmap Planner

2 N
o

Probabilistic Roadmaps

Figure: Probabilistic Roadmap Visualization [g]
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Grasping

Often motion planning and grasping goes hand in
hand.

Grasping

The two main problems are:
» Where to grasp?
» How to grasp?

Shadowhand [12]
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Gripper

Robotiq 2/3-Finger Gripper [10][11] Grasping

The problem of grasping is always highly dependant on the used gripper.

= Qoo

Empire Robotics - VERSABALL [6] Domenica 2-Finger Gripper [5] Applied Robotics Heavy Load Gripper [2]
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Basic Grasping

Simplest approach:
1. Create a 3D-model of object and define grasping point/area

2. Position gripper (e.g. two finger) ahead of grasping point via Inverse
Kinematics

3. Perform grasp either by known thickness of object or by pressure sensor.

... of course there are more robust and dynamic approaches

Basic Grasping
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Supervised Learned Grasping

Goal:
Grasping objects without environmental knowledge (e.g. 3D-Models, objects
position/orientation) Suenised Lsmed
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Supervised Learned Grasping

Goals and Problem

Configuration Space

[14] Saxena et al. - "Robotic Grasping of Novel Objects using Vision"
. . . . . . BoecinaplechHiqUss
1. Supervised learning on labeled grasping points for different objects. cellDecomposion
Artificial Potential
Methods

Probabilistic Roadmaps

Basic Grasping

Supervised Learned

Grasping

Humanoid Hands
‘ Postural Grasp Synergies

[14] Saxena et al.,p. 3

Therefore local image features (e.g. edges, textures, color, etc...) are processed.
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Supervised Learned Grasping

2. Recording 2D-images of target objects from different angles. B

Kinematics

3. Classification of grasping points at the images.

. \ Roadmap Techniques
" y Cell-Decomposition
Artificial Potential
Methods
y | & Probabilistic Roadmaps
[ i

Basic Grasping

Supervised Learned
Grasping

[14] Saxena et al.,p. 6

Humanoid Hands

4. Triangulation of grasping points by image and camera locations. R DRI

1sp- :.42
* G
m- Image Plane \
. +Z‘ — ’
G
[14] Saxena et al.,p. 6
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[15]Bernadino et al., p. 3

Figure: Shadowhand at University of Hamburg
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Grasping Approaches

» Analytical Approach:
Determine grasping points on the object and compute finger motions via
Inverse Kinematics (manipulation planning).

» Empirical Classification:
Analyze and classify human grasping behaviour and map (primitive sequences L
of ) motions to robotic hands.
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Eigengrasps

» About 80% of human grasps (22 DOF) can be approximated by only a view
dimensions.

> All grasps can be described by a couple of different hand poses.

Postural Grasp Synergies

Idea: Formalize suitable hand poses as eigengrasps and compute appropriate
grasp behavior for different 3D-Shapes (and hands).
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Postural Grasp Synergies

[15] Bernadino et al. - "Precision Grasp Synergies for Dexterous Robotic Hands"

» Grasp Synergies are correlating configurations of hand joints.
p Synerg g g J

Postural Grasp Synergies

[15]Bernadino et al., p. 4

[15]Bernadino et al., p. 4

» They are computed by the most significant correlations of joint
configurations in the eigengrasps via PCA.
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Postural Grasp Synergies

ka2

Postural Grasp Synergies

RLYR

[15] Bernadino et al., p. 6

90% of the grasps can be described by only 6 principal components.
(=~ dimensions)
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