Introduction

Applications

Manipulation

Goals and Problem Configuration Space Kinematics

Planning Approaches

Roadmap Techniques Cell-Decomposition Artificial Potential Methods Probabilistic Roadmap

Grasping

Basic Grasping Supervised Learned Grasping Humanoid Hands Postural Grasp Synergie

References

Manipulation Planning and Grasping

Lars Henning Kayser

University of Hamburg Faculty of Mathematics, Informatics und Natural Sciences Department of Informatics, Group TAMS

Integrated Seminar Intelligent Robotics June 11, 2016

Table of Contents

Introduction

Applications Manipulation

Goals and Problem Configuration Space Kinematics Planning Approaches Roadmap Techniques Cell-Decomposition Artificial Potential Methods Probabilistic Roadmaps

Grasping

Basic Grasping Supervised Learned Grasping Humanoid Hands Postural Grasp Synergies

Introduction

Applications

Manipulation

Goals and Problem Configuration Space Kinematics

Planning Approaches

Roadmap Techniques Cell-Decomposition Artificial Potential Methods Probabilistic Roadmap

Grasping

Basic Grasping Supervised Learned Grasping Humanoid Hands Postural Grasp Synergie

Different Applications

Actemium Industrial Robots [1]

NOAA Remote Operated Vehicle [8]

Da Vinci Surgical System [4]

Canadarm2 at ISS [13]

Introduction

Applications

Manipulation

Goals and Problem Configuration Space Kinematics

Planning Approaches

Roadmap Techniques Cell-Decomposition Artificial Potential Methods Probabilistic Roadmap

Grasping

Basic Grasping Supervised Learned Grasping Humanoid Hands Postural Grasp Synergie

Manipulation: Goals

Manipulation consists of two separable tasks:

- Endeffector Positioning (manipulation planning)
- Endeffector Application (e.g. grasping)

In general manipulators look like this:

KUKA LWR 4+ [7]

Introduction

Applications

Manipulation

Goals and Problem Configuration Space Kinematics

Planning Approaches

Roadmap Techniques Cell-Decomposition Artificial Potential Methods Probabilistic Roadmap

Grasping

Basic Grasping Supervised Learned Grasping Humanoid Hands Postural Grasp Synergie

Computing a movement for a manipulator's initial configuration so that its endeffector reaches a required target position.

How can that problem be computed?

Introduction

Applications

Manipulation

Goals and Problem Configuration Space Kinematics

Planning Approaches

Roadmap Techniques Cell-Decomposition Artificial Potential Methods Probabilistic Roadmap

Grasping

Basic Grasping Supervised Learned Grasping Humanoid Hands Postural Grasp Synergie

More Difficulties

Additionally many factors need to be considered:

- Obstacle detection & collision avoidance
- Cost reduction \leftrightarrow efficient manipulation
- Moving manipulator or object (or both)
- > Physical constraints: weight, speed, momentum, range
- ► Technical constraints: power, latency, accuracy, singularities

For now we focus on the first two...

Introduction

Applications

Manipulation

Goals and Problem Configuration Space Kinematics

Planning Approaches

Roadmap Techniques Cell-Decomposition Artificial Potential Methods Probabilistic Roadmap

Grasping

Basic Grasping Supervised Learned Grasping Humanoid Hands Postural Grasp Synergie:

Configuration Space

The position (and orientation) of the Endeffector regarding to the base depends on:

- ► Constant Device Features (≈distances & angles between links and joints)
- ► Variable Joint Configuration (≈motor settings of the joints)

 \rightarrow If constant device features are known, the manipulation problem corresponds to a path search in configuration space.

Introduction Applications

Manipulation Goals and Problem Configuration Space

Kinematics

Planning Approaches

Roadmap Techniques Cell-Decomposition Artificial Potential Methods Probabilistic Roadmap

Grasping

Basic Grasping Supervised Learned Grasping Humanoid Hands Postural Grasp Synergie:

Configuration Space

- ► The Configuration Space C_{space} defines all configurations of a manipulator.
- For a N-DOF-Manipulator C_{space} has N dimensions, each dimension representing a joint.
- ► A configuration vector *q* contains all joint settings of the manipulator.
- ► The reachable configuration space (in regards to range, obstacles, singularities...) is called C_{free}

Introduction Applications

Manipulation

Configuration Space Kinematics

Planning Approaches

Roadmap Techniques Cell-Decomposition Artificial Potential Methods Probabilistic Roadmap

Grasping

Basic Grasping Supervised Learned Grasping Humanoid Hands Postural Grasp Synergie

Kinematics

- ► Kinematics is the mathematical field of the description of mechanical motion.
- ► Kinematics is used to compute positions and motions of the endeffector into *C_{space}* and back.

Introduction

Applications

Manipulation

Goals and Problem Configuration Space Kinematics

Planning Approaches

Roadmap Techniques Cell-Decomposition Artificial Potential Methods Probabilistic Roadmap

Grasping

Basic Grasping Supervised Learned Grasping Humanoid Hands Postural Grasp Synergie:

Manipulation Planning in a Nutshell

- 1. Determine the current configuration vector A of the manipulator.
- 2. Find a configuration vector B for the Endeffector's target position.
- 3. Find a feasible path between configuration vectors A and B in C_{space} .
- **4.** Move the manipulator's joints according to that path, which results in a continuous motion in topological space.

But:

► A perfect solution can not be computed - C_{space} is too big and there might be no or infinite optimal paths.

Introduction

Applications

Manipulation

Goals and Problem Configuration Space Kinematics

Planning Approaches

Roadmap Techniques Cell-Decomposition Artificial Potential Methods Probabilistic Roadmap

Grasping

Basic Grasping Supervised Learned Grasping Humanoid Hands Postural Grasp Synergie:

Approaches

- 1. Roadmap Techniques
- 2. Cell-Decomposition Techniques
- 3. Artificial Potential Methods
- 4. Probabilistic Roadmaps

All approaches aim to create a searchable representation of C_{free} .

Introduction

Application

Manipulation

Goals and Problem Configuration Space Kinematics

Planning Approaches

Roadmap Techniques Cell-Decomposition Artificial Potential Methods Probabilistic Roadmap

Grasping

Basic Grasping Supervised Learned Grasping Humanoid Hands Postural Grasp Synergi

In general C_{free} is best to be described as a graph.

 \rightarrow Manipulation planning can be performed by a shortest path graph search like <u>Dijkstra</u> or <u>A*</u>.

Graph creation and search algorithms can be tuned for:

- distance
- safety
- speed
- accuracy
- completeness

Introduction

Applications

Manipulation

Goals and Problem Configuration Space Kinematics

Planning Approaches

Roadmap Techniques Cell-Decomposition Artificial Potential Methods Probabilistic Roadmap

Grasping

Basic Grasping Supervised Learned Grasping Humanoid Hands Postural Grasp Synergie

Roadmap Techniques

Idea:

Describe the N-Dimensional configuration space C_{free} as a connectivity graph and perform a search for a feasible path between two configurations.

Introduction

Applications

Manipulation

Goals and Problem Configuration Space Kinematics

Planning Approaches

Roadmap Techniques

Cell-Decomposition Artificial Potential Methods Probabilistic Roadmap

Grasping

Basic Grasping Supervised Learned Grasping Humanoid Hands Postural Grasp Synergie

Roadmap Techniques: Visibility Graph

All obstacles are represented by vertices, edges are the visible connections between them.

Figure: Example Visibility Graph Gasparetto et al. [16], p. 8

 \rightarrow All paths are close to obstacles.

Introduction

Application

Manipulation

Goals and Problem Configuration Space Kinematics

Planning Approaches

Roadmap Techniques

Cell-Decomposition Artificial Potential Methods Probabilistic Roadmap:

Grasping

Basic Grasping Supervised Learned Grasping Humanoid Hands Postural Grasp Synergie

Roadmap Techniques: Voronoi Diagrams

Figure: Example of a Voronoi Diagram Gasparetto et al. [16], p. 9

 \rightarrow Paths are as far away from obstacles as possible.

Introduction

Applications

Manipulation

Goals and Problem Configuration Space Kinematics

Planning Approaches

Roadmap Techniques

Cell-Decomposition Artificial Potential Methods Probabilistic Roadmap

Grasping

Basic Grasping Supervised Learned Grasping Humanoid Hands Postural Grasp Synergie

Cell-Decomposition

Idea:

Compute a tree of paths in C_{free} by disabling all obstacles from a graph representation of C_{space} .

Introduction

Applications

Manipulation

Goals and Problem Configuration Space Kinematics

Planning Approaches

Roadmap Techniques

Cell-Decomposition

Artificial Potential Methods Probabilistic Roadmap

Grasping

Basic Grasping Supervised Learned Grasping Humanoid Hands Postural Grasp Synergie

Exact Cell-Decomposition

Figure: Exact Cell-Decomposition Gasparetto et al. [16], p. 10

Introduction

Applications

Manipulation

Goals and Problem Configuration Space Kinematics

Planning Approaches

Roadmap Techniques

Cell-Decomposition

Artificial Potential Methods Probabilistic Roadmap

Grasping

subdivision of space into

numbered polygons connectivity graph

regions to be crossed

а

b

c regio d path Basic Grasping Supervised Learned Grasping Humanoid Hands Postural Grasp Synergie

Approximate Cell-Decomposition

To generate a connectivity graph for a required accuracy:

- **1.** Divide C_{space} into 2^n equal sized cells.
- 2. Check if cells are free or blocked by obstacles.
- 3. If a cell is only partially blocked by an obstacle, decompose recursively.

Figure: 2-Dimensional Cell-Decomposition Gasparetto et al. [16], p. 10

Introduction

Application

Manipulation

Soals and Problem Configuration Space Kinematics

Planning Approaches

Roadmap Techniques

Cell-Decomposition

Artificial Potential Methods Probabilistic Roadmap

Grasping

Basic Grasping Supervised Learned Grasping Humanoid Hands Postural Grasp Synergie

Cell-Decomposition: Tree-Representation

- The corresponding graph of the cell decomposition is a tree of adjacent configuration vectors.
- The motion is therefore specified as a path in that tree and can be computed by graph search techniques.

Figure: Approximate Cell-Decomposition Gasparetto et al. [16], p. 11

Introduction

Application

Manipulation

Goals and Problem Configuration Space Kinematics

Planning Approaches

Roadmap Technique

Cell-Decomposition

Artificial Potential Methods Probabilistic Roadmap:

Grasping

Basic Grasping Supervised Learned Grasping Humanoid Hands Postural Grasp Synergie

Artificial Potential Methods

Idea:

 C_{space} is defined as a potential field.

- The target configuration is the attracting force
- Obstacles are producing a repulsive force.

 \rightarrow The motion is lead by the path of the highest potential along the field.

Introduction

Applications

Manipulation

Goals and Problem Configuration Space Kinematics

Planning Approaches

Roadmap Techniques

Artificial Potential Methods

Probabilistic Roadmaps

Grasping

Basic Grasping Supervised Learned Grasping Humanoid Hands Postural Grasp Synergie

Probabilistic Roadmaps

Idea:

(Drastically) reduce complexity of Roadmap computation by probabilistic algorithms.

Introduction

Applications

Manipulation

Goals and Problem Configuration Space Kinematics

Planning Approaches

Roadmap Techniques Cell-Decomposition Artificial Potential Methods

Probabilistic Roadmaps

Grasping

Basic Grasping Supervised Learned Grasping Humanoid Hands Postural Grasp Synergie

Probabilistic Roadmap

- 1. Find obstacles and surround with connected nodes.
- 2. Add random nodes to C_{free} and connect to closest existing nodes.
- 3. Repeat step 2 until a density criterion is reached.
- 4. Perform graph search algorithm on created roadmap.

This process can be optimized, e.g. by adding more nodes at areas with coarse connectivity.

Introduction

Application

Manipulation

Soals and Problem Configuration Space Kinematics

Planning Approaches

Roadmap Techniques Cell-Decomposition Artificial Potential Methods

Probabilistic Roadmaps

Grasping

Basic Grasping Supervised Learned Grasping Humanoid Hands Postural Grasp Synergie

Probabilistic Roadmap Planner

Figure: Probabilistic Roadmap Visualization [9]

Introduction

Applications

Manipulation

Goals and Problem Configuration Space Kinematics

Planning Approaches

Roadmap Techniques Cell-Decomposition Artificial Potential Methods

Probabilistic Roadmaps

Grasping

Basic Grasping Supervised Learned Grasping Humanoid Hands Postural Grasp Synergie

Grasping

Shadowhand [12]

Often motion planning and grasping goes hand in hand.

The two main problems are:

- ► Where to grasp?
- ► How to grasp?

Introduction

Application

Manipulation

Goals and Problem Configuration Space Kinematics

Planning Approaches

Roadmap Techniques Cell-Decomposition Artificial Potential Methods Probabilistic Roadmap

Grasping

Basic Grasping Supervised Learned Grasping Humanoid Hands Postural Grasp Synergie

Gripper

Robotiq 2/3-Finger Gripper [10][11]

The problem of grasping is always highly dependant on the used gripper.

Empire Robotics - VERSABALL [6]

Domenica 2-Finger Gripper [5]

Applied Robotics Heavy Load Gripper [2]

Introduction

Application

Manipulation

Goals and Problem Configuration Space Kinematics

Planning Approaches

Roadmap Techniques Cell-Decomposition Artificial Potential Methods Probabilistic Roadmap

Grasping

Basic Grasping Supervised Learned Grasping Humanoid Hands Postural Grasp Synergie

Basic Grasping

Simplest approach:

- 1. Create a 3D-model of object and define grasping point/area
- 2. Position gripper (e.g. two finger) ahead of grasping point via Inverse Kinematics
- 3. Perform grasp either by known thickness of object or by pressure sensor.

... of course there are more robust and dynamic approaches

Introduction

Applications

Manipulation

Goals and Problem Configuration Space Kinematics

Planning Approaches

Roadmap Techniques Cell-Decomposition Artificial Potential Methods Probabilistic Roadmap

Grasping

Basic Grasping

Supervised Learned Grasping Humanoid Hands Postural Grasp Synergies

Goal:

Grasping objects without environmental knowledge (e.g. 3D-Models, objects position/orientation)

Introduction

Application

Manipulation

Goals and Problem Configuration Space Kinematics

Planning Approaches

Roadmap Techniques Cell-Decomposition Artificial Potential Methods Probabilistic Roadmap

Grasping

Basic Grasping

Supervised Learned Grasping

Humanoid Hands

Postural Grasp Synergies

[14] Saxena et al. - "Robotic Grasping of Novel Objects using Vision"

1. Supervised learning on labeled grasping points for different objects.

Therefore local image features (e.g. edges, textures, color, etc...) are processed.

Introduction

Application

Manipulation

ioals and Problem Configuration Space Kinematics

Planning Approaches

Roadmap Techniques Cell-Decomposition Artificial Potential Methods Probabilistic Roadmap:

Grasping

Basic Grasping

Supervised Learned Grasping

Humanoid Hands

- 2. Recording 2D-images of target objects from different angles.
- 3. Classification of grasping points at the images.

4. Triangulation of grasping points by image and camera locations.

[14] Saxena et al.,p. 6

Introduction

Applications

Manipulation

Goals and Problem Configuration Space Kinematics

Planning Approaches

Roadmap Techniques Cell-Decomposition Artificial Potential Methods Probabilistic Roadmap

Grasping

Basic Grasping

Supervised Learned Grasping

Humanoid Hands

5. Manipulation Planning for adjusted target configuration via Inverse Kinematics.

Saxena et al.,p. 12

Introduction

Applications

Manipulation

Soals and Problem Configuration Space Kinematics

Planning Approaches

Roadmap Techniques Cell-Decomposition Artificial Potential Methods Probabilistic Roadmap

Grasping

Basic Grasping

Supervised Learned Grasping

Humanoid Hands

References

[14]

Humanoid Hands

- \blacktriangleright 24 DOF (20 controllable) the human hand has pprox 22 DOF
- powered by air-muscles

Introduction

Applications

Manipulation

ioals and Problem Configuration Space Kinematics

Planning Approaches

Roadmap Techniques Cell-Decomposition Artificial Potential Methods Probabilistic Roadmap

Grasping

Basic Grasping Supervised Learned Grasping

Humanoid Hands Postural Grasp Synergies

References

[15]Bernadino et al., p. 3

Figure: Shadowhand at University of Hamburg

Grasping Approaches

Analytical Approach:

Determine grasping points on the object and compute finger motions via Inverse Kinematics (manipulation planning).

Empirical Classification:

Analyze and classify human grasping behaviour and map (primitive sequences of) motions to robotic hands.

Introduction

Applications

Manipulation

Goals and Problem Configuration Space Kinematics

Planning Approaches

Roadmap Techniques Cell-Decomposition Artificial Potential Methods Probabilistic Roadmap

Grasping

Basic Grasping Supervised Learned Grasping

Humanoid Hands

Introduction

Applications

Manipulation

Goals and Problem Configuration Space Kinematics

Planning Approaches

Roadmap Techniques Cell-Decomposition Artificial Potential Methods Probabilistic Roadmap

Grasping

Basic Grasping Supervised Learned Grasping Humanoid Hands

Postural Grasp Synergies

References

About 80% of human grasps (22 DOF) can be approximated by only a view dimensions.

► All grasps can be described by a couple of different hand poses.

Idea: Formalize suitable hand poses as *eigengrasps* and compute appropriate grasp behavior for different 3D-Shapes (and hands).

Eigengrasps

Postural Grasp Synergies

[15] Bernadino et al. - "Precision Grasp Synergies for Dexterous Robotic Hands"

Grasp Synergies are correlating configurations of hand joints.

[15]Bernadino et al., p. 4

They are computed by the most significant correlations of joint configurations in the eigengrasps via PCA.

Introduction

Application

Manipulation

Goals and Problem Configuration Space Kinematics

Planning Approaches

Roadmap Techniques Cell-Decomposition Artificial Potential Methods Probabilistic Roadmap

Grasping

Basic Grasping Supervised Learned Grasping Humanoid Hands

Postural Grasp Synergies

Postural Grasp Synergies

[15] Bernadino et al., p. 6

90% of the grasps can be described by only 6 principal components. (\approx dimensions)

Introduction

Applications

Manipulation

Soals and Problem Configuration Space Kinematics

Planning Approaches

Roadmap Techniques Cell-Decomposition Artificial Potential Methods Probabilistic Roadmap

Grasping

Basic Grasping Supervised Learned Grasping Humanoid Hands

Postural Grasp Synergies

- [1] Actemium The Industrial Robot: Reinventing The Factory. http://www.actemium.com/en/smart-industry/smart-process/theindustrial-robot-reinventing-the-factory/. 10.06.2016.
- [2] Applied Robotics Heavy Load Gripper. http://www.directindustry.com/prod/applied-robotics/product-81135-761045.html. 11.06.2016.
- [3] Artificial Potential Field. http://www.cs.mcgill.ca/~hsafad/robotics/. 11.06.2016.
- [4] CMGlee Cambridge Science Festival 2015 Da Vinci. https://commons.wikimedia.org/wiki/File: Cmglee_Cambridge_Science_Festival_2015_da_Vinci.jpg. 10.06.2016.
- [5] Domenica 2-Finger Gripper. https://svrobo.org/robot-launch-2014-first-round-favorites/. 11.06.2016.
- [6] Empire Robotics VERSABALL. http://press.hughescom.net/empirerobotics-new-multitasking-versaball-gripper-ushers-infundamental-agile-manufacturing-change/. 11.06.2016.

Introduction

Application

Manipulation

Goals and Problem Configuration Space Kinematics

Planning Approaches

Roadmap Techniques Cell-Decomposition Artificial Potential Methods Probabilistic Roadmap

Grasping

Basic Grasping Supervised Learned Grasping Humanoid Hands Postural Grasp Synergie

- [7] KUKA LWR 4+. http://autsys.aalto.fi/en/IntelligentRobotics. 10.06.2016.
- [8] NOAA Photo Library ROV Hercules.

https://www.flickr.com/photos/noaaphotolib/5102289970/. 10.06.2016.

[9] Probabilistic Roadmap.

https://commons.wikimedia.org/wiki/File:PRM_with_Ob-maps.gif. 11.06.2016.

[10] Robotiq 2-Finger Gripper.

http://www.advancedmotion.com/products/robotiq-grippers/. 11.06.2016.

[11] Robotiq 3-Finger Gripper.

http://support.robotiq.com/display/IMB/Home. 11.06.2016.

- [12] Shadowhand with Bulb. https://commons.wikimedia.org/wiki/File: Shadow_Hand_Bulb_large_Alpha.png. 11.06.2016.
- [13] STS-114 Shuttle Mission Imagery Canadarm2. http://spaceflight.nasa.gov/gallery/images/shuttle/sts-114/ html/s114e6647.html. 10.06.2016.

Introduction

Manipulation

Goals and Problem Configuration Space Kinematics

Planning Approaches

Roadmap Techniques Cell-Decomposition Artificial Potential Methods Probabilistic Roadmap

Grasping

Basic Grasping Supervised Learned Grasping Humanoid Hands Postural Grasp Synergie

- [14] S. Ashutosh, J. Driemeyer, and Y. Ng Andrew. Robotic grasping of novel objects using vision, 2008.
- [15] A. Bernardino, M. Henriques, N. Hendrich, and J. Zhang. Precision grasp synergies for dexterous robotic hands. In <u>2013 IEEE International</u> <u>Conference on Robotics and Biomimetics (ROBIO)</u>, pages 62–67, Dec 2013.
- [16] G. Carbone and F. Gomez-Bravo, editors. <u>Motion and Operation Planning</u> of Robotic Systems - Background and Practical Approaches, volume 29 of Mechanisms and Machine Science. Springer International Publishing, 2015.

Introduction Applications

Manipulation

Goals and Problem Configuration Space Kinematics

Planning Approaches

Roadmap Techniques Cell-Decomposition Artificial Potential Methods Probabilistic Roadmap

Grasping

Basic Grasping Supervised Learned Grasping Humanoid Hands Postural Grasp Synergie