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Different Applications

Actemium Industrial Robots [1] NOAA Remote Operated Vehicle [8]

Da Vinci Surgical System [4] Canadarm2 at ISS [13]
3 / 35
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Manipulation: Goals
Manipulation consists of two separable tasks:

I Endeffector Positioning (manipulation planning)
I Endeffector Application (e.g. grasping)

In general manipulators look like this:

KUKA LWR 4+ [7]
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Manipulation: Goal

Computing a movement for a manipulator’s initial configuration so that
its endeffector reaches a required target position.

How can that problem be computed?
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More Difficulties

Additionally many factors need to be considered:
I Obstacle detection & collision avoidance
I Cost reduction ↔ efficient manipulation
I Moving manipulator or object (or both)
I Physical constraints: weight, speed, momentum, range
I Technical constraints: power, latency, accuracy, singularities

For now we focus on the first two. . .
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Configuration Space

The position (and orientation) of the Endeffector regarding to the base depends
on:

I Constant Device Features (≈distances & angles between links and joints)
I Variable Joint Configuration (≈motor settings of the joints)

→If constant device features are known, the manipulation problem corresponds to
a path search in configuration space.

7 / 35



Introduction
Applications

Manipulation
Goals and Problem

Configuration Space

Kinematics

Planning
Approaches
Roadmap Techniques

Cell-Decomposition

Artificial Potential
Methods

Probabilistic Roadmaps

Grasping
Basic Grasping

Supervised Learned
Grasping

Humanoid Hands

Postural Grasp Synergies

References

Configuration Space

I The Configuration Space Cspace defines all configurations of a manipulator.
I For a N-DOF-Manipulator Cspace has N dimensions, each dimension

representing a joint.
I A configuration vector q contains all joint settings of the manipulator.
I The reachable configuration space (in regards to range, obstacles,

singularities. . . ) is called Cfree

8 / 35
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Kinematics

I Kinematics is the mathematical field of the description of mechanical motion.
I Kinematics is used to compute positions and motions of the endeffector into

Cspace and back.

Configuration Vector Position of Endeffector

forward K

inverse K
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Manipulation Planning in a Nutshell

1. Determine the current configuration vector A of the manipulator.
2. Find a configuration vector B for the Endeffector’s target position.
3. Find a feasible path between configuration vectors A and B in Cspace .
4. Move the manipulator’s joints according to that path, which results in a

continuous motion in topological space.

But:
I A perfect solution can not be computed - Cspace is too big and there might

be no or infinite optimal paths.
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Approaches

1. Roadmap Techniques
2. Cell-Decomposition Techniques
3. Artificial Potential Methods
4. Probabilistic Roadmaps

All approaches aim to create a searchable representation of Cfree .

11 / 35
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In general Cfree is best to be described as a graph.

→ Manipulation planning can be performed by a shortest path graph search like
Dijkstra or A*.

Graph creation and search algorithms can be tuned for:
I distance
I safety
I speed
I accuracy
I completeness

12 / 35
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Roadmap Techniques

Idea:

Describe the N-Dimensional configuration space Cfree as a connectivity graph and
perform a search for a feasible path between two configurations.

13 / 35
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Roadmap Techniques: Visibility Graph
All obstacles are represented by vertices, edges are the visible connections between
them.

8 A. Gasparetto et al.

Fig. 3 Visibility graph

Figure4 shows some path generated by usingVoronoi diagrams. The three squares
in the diagram represents obstacles, while the blue lines are the set of points equidis-
tant from at least two obstacles. Therefore the paths defined with this technique are
designed to be as far away as possible from nearby obstacles. Examples of path
planning algorithms may be found in [15, 35, 84].

2.2 Cell Decomposition Methods

According to the cell decomposition methods, the free space of the robot is subdi-
vided into several regions, called cells, in such a way that a path between any two
configurations lying in the same cell is straightforward to generate. It is then natural
to define a so-called connectivity graph, which represents the adjacency relations
between cells. Namely, the nodes of the graph represent the cells extracted from
the free space, and there is an arch between two nodes are connected if and only
if the corresponding cells are adjacent. The path planning problem is, again, turned
into a graph searching problem, and can therefore be solved using graph-searching
techniques.

Figure5 illustrates the procedure described above, which is named exact cell
decomposition technique, because the union of the cell represents exactly the free
space. In some cases, an exact computation of the free space is not possible or
convenient. Approximate cell decomposition methods must therefore be employed.
Figure6 shows how these techniques work:

Figure: Example Visibility Graph Gasparetto et al. [16], p. 8

→ All paths are close to obstacles.
14 / 35
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Roadmap Techniques: Voronoi Diagrams
Path Planning and Trajectory Planning Algorithms: A General Overview 9

Fig. 4 Paths resulting from Voronoi diagrams

• the whole C-space (assumed 2-dimensional) is divided into four cells;
• the algorithm checks if each cell is completely empty, completely full or mixed
(such words obviously refer to the occupancy by the obstacles);

• eachmixed cell is in turn divided into four subcells, and the algorithm is recursively
applied to check the status of every subcell and recursively divide each mixed
subcell into four sub-subcells.

The graph that may be naturally associated to the approximate cell decomposition is
a tree, named quadtree for 2-dimensional spaces (Fig. 7), octree for 3-dimensional
spaces (Fig. 8), 16-tree for 4-dimensional spaces, and so forth.

2.3 Artificial Potential Methods

The artificial potential methodologies are a different approach to the path planning
problem. The basic idea is to consider the robot in the configuration space as a
moving point subject to a potential field generated by the goal configuration and
the obstacles in the C-space: namely, the target configuration produces an attractive
potential, while the obstacles generate a repulsive potential. The sum of these two
contribution is the total potential, which can be seen as an artificial force applied

Figure: Example of a Voronoi Diagram Gasparetto et al. [16], p. 9

→ Paths are as far away from obstacles as possible.
15 / 35
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Cell-Decomposition

Idea:

Compute a tree of paths in Cfree by disabling all obstacles from a graph
representation of Cspace .

16 / 35
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Exact Cell-Decomposition
10 A. Gasparetto et al.

Fig. 5 Exact cell decomposition: a subdivision of space into numbered polygons, b connectivity
graph, c regions to be crossed, d path

Fig. 6 Approximate cell decomposition

to the robot, aimed at approaching the goal and avoiding the obstacles. Thus, given
any configuration during the robot motion, the next configuration can be determined
by the direction of the artificial force to which the robot is subjected. This normally
represents the most promising direction of motion in terms of free path. An example
of the application of the artificial potential method is shown in Fig. 9.

The artificial potential method was originally conceived by Khatib [50] and fur-
ther developed by Volpe [91, 92]. Such a technique can find applications in many
fields, because it can be successfully implemented online, thus moving the obstacle
avoidance problem from the higher (and slower) level of path planners to the lower
(and faster) level of online motion controllers. This implies that the good features
of the artificial potential methods, especially the reactivity to environment changes,

a subdivision of space into
numbered polygons

b connectivity graph
c regions to be crossed
d path

Figure: Exact Cell-Decomposition Gasparetto et al. [16], p. 10
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Approximate Cell-Decomposition
To generate a connectivity graph for a required accuracy:
1. Divide Cspace into 2n equal sized cells.
2. Check if cells are free or blocked by obstacles.
3. If a cell is only partially blocked by an obstacle, decompose recursively.

10 A. Gasparetto et al.

Fig. 5 Exact cell decomposition: a subdivision of space into numbered polygons, b connectivity
graph, c regions to be crossed, d path

Fig. 6 Approximate cell decomposition

to the robot, aimed at approaching the goal and avoiding the obstacles. Thus, given
any configuration during the robot motion, the next configuration can be determined
by the direction of the artificial force to which the robot is subjected. This normally
represents the most promising direction of motion in terms of free path. An example
of the application of the artificial potential method is shown in Fig. 9.

The artificial potential method was originally conceived by Khatib [50] and fur-
ther developed by Volpe [91, 92]. Such a technique can find applications in many
fields, because it can be successfully implemented online, thus moving the obstacle
avoidance problem from the higher (and slower) level of path planners to the lower
(and faster) level of online motion controllers. This implies that the good features
of the artificial potential methods, especially the reactivity to environment changes,

Figure: 2-Dimensional Cell-Decomposition Gasparetto et al. [16], p. 10
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Cell-Decomposition: Tree-Representation
I The corresponding graph of the cell decomposition is a tree of adjacent

configuration vectors.
I The motion is therefore specified as a path in that tree and can be computed

by graph search techniques.

Path Planning and Trajectory Planning Algorithms: A General Overview 11

Mixed cell

Full cell

Empty cell

Fig. 7 Quadtree

Mixed cell

Full cell

Empty cell

Fig. 8 Octree

duly detected by the robot sensors, enable the robot controller to manage unexpected
workspace changes in a fast way.

However, the artificial potential methods are intrinsically affected by a major
problem, namely the presence of local minima, where the robot may find itself
trapped. In order to overcome this problem, several solutions have been proposed:
for instance, using potential functions which do not have local minima [25, 26, 51,
53]. Such functions are called navigation functions.

In [39, 42] alternative applications of the artificial potential method are presented.
Another approach to solve the path planning problem is found in [5], where a

special kind of planners, named RPP (Random Path Planners), is proposed: local
minima are avoided by combining the concepts of artificial potential field with ran-
dom search techniques. Albeit with some limitations, RPP proved to be able to solve
path planning problems for robots with a high number of degrees of freedom, with
reasonable computation times.

Other examples of RPP can be found in [18–21].

Path Planning and Trajectory Planning Algorithms: A General Overview 11

Mixed cell

Full cell

Empty cell

Fig. 7 Quadtree

Mixed cell

Full cell

Empty cell

Fig. 8 Octree

duly detected by the robot sensors, enable the robot controller to manage unexpected
workspace changes in a fast way.

However, the artificial potential methods are intrinsically affected by a major
problem, namely the presence of local minima, where the robot may find itself
trapped. In order to overcome this problem, several solutions have been proposed:
for instance, using potential functions which do not have local minima [25, 26, 51,
53]. Such functions are called navigation functions.

In [39, 42] alternative applications of the artificial potential method are presented.
Another approach to solve the path planning problem is found in [5], where a

special kind of planners, named RPP (Random Path Planners), is proposed: local
minima are avoided by combining the concepts of artificial potential field with ran-
dom search techniques. Albeit with some limitations, RPP proved to be able to solve
path planning problems for robots with a high number of degrees of freedom, with
reasonable computation times.

Other examples of RPP can be found in [18–21].

Figure: Approximate Cell-Decomposition Gasparetto et al. [16], p. 11
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Artificial Potential Methods

Idea:
Cspace is defined as a potential field.

I The target configuration is the
attracting force

I Obstacles are producing a
repulsive force.

Artificial Potential Field [3]

→ The motion is lead by the path of the highest potential along the field.

20 / 35
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Probabilistic Roadmaps

Idea:

(Drastically) reduce complexity of Roadmap computation by probabilistic
algorithms.

21 / 35
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Probabilistic Roadmap

1. Find obstacles and surround with connected nodes.
2. Add random nodes to Cfree and connect to closest existing nodes.
3. Repeat step 2 until a density criterion is reached.
4. Perform graph search algorithm on created roadmap.

This process can be optimized, e.g. by adding more nodes at areas with coarse
connectivity.

22 / 35
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Probabilistic Roadmap Planner

Figure: Probabilistic Roadmap Visualization [9]
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Grasping

Shadowhand [12]

Often motion planning and grasping goes hand in
hand.

The two main problems are:
I Where to grasp?
I How to grasp?

24 / 35
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Gripper

Robotiq 2/3-Finger Gripper [10][11]

The problem of grasping is always highly dependant on the used gripper.

Empire Robotics - VERSABALL [6] Domenica 2-Finger Gripper [5] Applied Robotics Heavy Load Gripper [2]

25 / 35
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Basic Grasping

Simplest approach:
1. Create a 3D-model of object and define grasping point/area
2. Position gripper (e.g. two finger) ahead of grasping point via Inverse

Kinematics
3. Perform grasp either by known thickness of object or by pressure sensor.

. . . of course there are more robust and dynamic approaches

26 / 35
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Supervised Learned Grasping

Goal:
Grasping objects without environmental knowledge (e.g. 3D-Models, objects
position/orientation)

27 / 35
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Supervised Learned Grasping

[14] Saxena et al. - "Robotic Grasping of Novel Objects using Vision"

1. Supervised learning on labeled grasping points for different objects.

(a) Martini glass (b) Mug (c) Eraser (d) Book (e) Pencil

Figure 3: The images (top row) with the corresponding labels(shown in red in the bottom row) of the five object classes used
for training. The classes of objects used for training were martini glasses, mugs, whiteboard erasers, books and pencils.

angle and round “blocks”).[Moraleset al., 2002a; 2002b]
calculated 2-d positions of three-fingered grasps from 2-d ob-
ject contours based on feasibility and force closure criteria.
[Bowers and Lumia, 2003] also considered the grasping of
planar objects and chose the location of the three fingers of a
hand by first classifying the object as circle, triangle, square
or rectangle from a few visual features, and then using pre-
scripted rules based on fuzzy logic.[Kamonet al., 1996]
used Q-learning to control the arm to reach towards a spheri-
cal object to grasp it using a parallel plate gripper.

If the desired location of the grasp has been identified, tech-
niques such as visual servoing that align the gripper to the de-
sired location[Kragic and Christensen, 2003] or haptic feed-
back [Petrovskayaet al., 2006] can be used to pick up the
object. [Platt et al., 2005] learned to sequence together ma-
nipulation gaits for four specific, known 3-d objects. How-
ever, they considered fairly simple scenes, and used online
learning to associate a controller with the height and width
of the bounding ellipsoid containing the object. For grasping
known objects, one can also use Learning-by-Demonstration
[Hueseret al., 2006], in which a human operator demon-
strates how to grasp an object, and the robot learns to grasp
that object by observing the human hand through vision.

The task of identifying where to grasp an object (of the
sort typically found in the home or office) involves solving
a difficult perception problem. This is because the objects
vary widely in appearance, and because background clut-
ter (e.g., dishwasher prongs or a table top with a pattern)
makes it even more difficult to understand the shape of a
scene. There are numerous robust learning algorithms that
can infer useful information about objects, even from a clut-
tered image. For example, there is a large amount of work
on recognition of known object classes (such as cups, mugs,
etc.), e.g.,[Schneiderman and Kanade, 1998]. The perfor-
mance of these object recognition algorithms could proba-

bly be improved if a 3-d model of the object were available,
but they typically do not require such models. For exam-
ple, that an object is cup-shaped can often be inferred di-
rectly from a 2-d image. Our approach takes a similar di-
rection, and will attempt to infer grasps directly from 2-d
images, even ones containing clutter.[Saxenaet al., 2005;
2007d] also showed that given just a single image, it is often
possible to obtain the 3-d structure of a scene. While knowing
the 3-d structure by no means implies knowing good grasps,
this nonetheless suggests that most of the information in the
3-d structure may already be contained in the 2-d images, and
suggests that an approach that learns directly from 2-d images
holds promise. Indeed,[Marottaet al., 2004] showed that hu-
mans can grasp an object using only one eye.

Our work also takes inspiration from[Castiello, 2005],
which showed that cognitive cues and previously learned
knowledge both play major roles in visually guided grasping
in humans and in monkeys. This indicates that learning from
previous knowledge is an important component of grasping
novel objects.

Further,[Goodaleet al., 1991] showed that there is a disso-
ciation between recognizing objects and grasping them, i.e.,
there are separate neural pathways that recognize objects and
that direct spatial control to reach and grasp the object. Thus,
given only a quick glance at almost any rigid object, most pri-
mates can quickly choose a grasp to pick it up, even without
knowledge of the object type. Our work represents perhaps a
first step towards designing a vision grasping algorithm which
can do the same.

3 Learning the Grasping Point
We consider the general case of grasping objects—even ones
not seen before—in 3-d cluttered environments such as in a
home or office. To address this task, we will use an image of
the object to identify a location at which to grasp it.

[14] Saxena et al.,p. 3

Therefore local image features (e.g. edges, textures, color, etc. . . ) are processed.
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Supervised Learned Grasping
2. Recording 2D-images of target objects from different angles.
3. Classification of grasping points at the images.

(a) Coffee Pot (b) Duct tape (c) Marker (d) Mug (e) Synthetic Martini Glass

Figure 7: Grasping point classification. The red points in each image show the locations most likely to be a grasping point, as
predicted by our logistic regression model. (Best viewed incolor.)

Now, to predict which locations in the 2-d image are grasp-
ing points (Figure 7), we define the class labelz(u, v) as fol-
lows. For each location(u, v) in an imageC, z(u, v) = 1
if (u, v) is the projection of a grasping point onto the image
plane, andz(u, v) = 0 otherwise. For a corresponding loca-
tion (û, v̂) in imageĈ, we similarly definêz(û, v̂) to indicate
whether position(û, v̂) represents a grasping point in the im-
ageĈ. Since(u, v) and(û, v̂) are corresponding pixels inC
andĈ, we assumêz(û, v̂) = z(u, v). Thus:

P (z(u, v) = 1|C) = P (ẑ(û, v̂) = 1|Ĉ)

=

∫

ǫu

∫

ǫv

P (ǫu, ǫv)P (ẑ(u+ ǫu, v + ǫv) = 1|Ĉ)dǫudǫv(1)

Here,P (ǫu, ǫv) is the (Gaussian) density overǫu andǫv. We
then use logistic regression to model the probability of a 2-d
position(u + ǫu, v + ǫv) in Ĉ being a good grasping point:

P (ẑ(u + ǫu, v + ǫv) = 1|Ĉ) = P (ẑ(u+ ǫu, v + ǫv) = 1|x; θ)
= 1/(1 + e−xT θ)

(2)

wherex ∈ R459 are the features for the rectangular patch
centered at(u + ǫu, v + ǫv) in imageĈ (described in Sec-
tion 3.3). The parameter of this modelθ ∈ R459 is learned
using standard maximum likelihood for logistic regression:
θ∗ = argmaxθ

∏
i P (zi|xi; θ), where(xi, zi) are the syn-

thetic training examples (image patches and labels), as de-
scribed in Section 3.2. Figure 7a-d shows the result of apply-
ing the learned logistic regression model to some real (non-
synthetic) images.

3-d grasp model: Given two or more images of a new ob-
ject from different camera positions, we want to infer the 3-d
position of the grasping point. (See Figure 8.) Because lo-
gistic regression may have predicted multiple grasping points
per image, there is usually ambiguity in the correspondence
problem (i.e., which grasping point in one image corresponds
to which graping point in another). To address this while also
taking into account the uncertainty in camera position, we
propose a probabilistic model over possible grasping points
in 3-d space. In detail, we discretize the 3-d work-space of
the robotic arm into a regular 3-d gridG ⊂ R3, and associate
with each grid elementj a random variableyj , so thatyj = 1
if grid cell j contains a grasping point, andyj = 0 otherwise.

Figure 8: (a) Diagram illustrating rays from two imagesC1

andC2 intersecting at a grasping point (shown in dark blue).
(Best viewed in color.)

From each camera locationi = 1, ..., N , one image is
taken. In imageCi, let the ray passing through(u, v) be
denotedRi(u, v). Let Gi(u, v) ⊂ G be the set of grid-
cells through which the rayRi(u, v) passes. Letr1, ...rK ∈
Gi(u, v) be the indices of the grid-cells lying on the ray
Ri(u, v) .

We know that if any of the grid-cellsrj along the ray rep-
resent a grasping point, then its projection is a grasp point.
More formally, zi(u, v) = 1 if and only if yr1 = 1 or
yr2 = 1 or . . . or yrK = 1. For simplicity, we use a (ar-
guably unrealistic) naive Bayes-like assumption of indepen-
dence, and model the relation betweenP (zi(u, v) = 1|Ci)
andP (yr1 = 1 or . . . or yrK = 1|Ci) as

P (zi(u, v) = 0|Ci) = P (yr1 = 0, ..., yrK = 0|Ci)

=

K∏

j=1

P (yrj = 0|Ci) (3)

Assuming that any grid-cell along a ray is equally likely to be
a grasping point, this therefore gives

P (yrj = 1|Ci) = 1− (1− P (zi(u, v) = 1|Ci))
1/K (4)

Next, using another naive Bayes-like independence as-
sumption, we estimate the probability of a particular grid-cell

[14] Saxena et al.,p. 6

4. Triangulation of grasping points by image and camera locations.
(a) Coffee Pot (b) Duct tape (c) Marker (d) Mug (e) Synthetic Martini Glass

Figure 7: Grasping point classification. The red points in each image show the locations most likely to be a grasping point, as
predicted by our logistic regression model. (Best viewed incolor.)
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position of the grasping point. (See Figure 8.) Because lo-
gistic regression may have predicted multiple grasping points
per image, there is usually ambiguity in the correspondence
problem (i.e., which grasping point in one image corresponds
to which graping point in another). To address this while also
taking into account the uncertainty in camera position, we
propose a probabilistic model over possible grasping points
in 3-d space. In detail, we discretize the 3-d work-space of
the robotic arm into a regular 3-d gridG ⊂ R3, and associate
with each grid elementj a random variableyj , so thatyj = 1
if grid cell j contains a grasping point, andyj = 0 otherwise.

Figure 8: (a) Diagram illustrating rays from two imagesC1

andC2 intersecting at a grasping point (shown in dark blue).
(Best viewed in color.)

From each camera locationi = 1, ..., N , one image is
taken. In imageCi, let the ray passing through(u, v) be
denotedRi(u, v). Let Gi(u, v) ⊂ G be the set of grid-
cells through which the rayRi(u, v) passes. Letr1, ...rK ∈
Gi(u, v) be the indices of the grid-cells lying on the ray
Ri(u, v) .

We know that if any of the grid-cellsrj along the ray rep-
resent a grasping point, then its projection is a grasp point.
More formally, zi(u, v) = 1 if and only if yr1 = 1 or
yr2 = 1 or . . . or yrK = 1. For simplicity, we use a (ar-
guably unrealistic) naive Bayes-like assumption of indepen-
dence, and model the relation betweenP (zi(u, v) = 1|Ci)
andP (yr1 = 1 or . . . or yrK = 1|Ci) as

P (zi(u, v) = 0|Ci) = P (yr1 = 0, ..., yrK = 0|Ci)

=
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j=1

P (yrj = 0|Ci) (3)

Assuming that any grid-cell along a ray is equally likely to be
a grasping point, this therefore gives

P (yrj = 1|Ci) = 1− (1− P (zi(u, v) = 1|Ci))
1/K (4)

Next, using another naive Bayes-like independence as-
sumption, we estimate the probability of a particular grid-cell
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5. Manipulation Planning for adjusted target configuration via Inverse
Kinematics.

Figure 14: Dishwasher experiments (Section 6.3): Our robotic arm unloads items from a dishwasher.

forks are only about 0.5cm thick; therefore a larger clearance
than 0.5cm was needed for them to be grasped using our par-
allel plate gripper, making it physically extremely difficult to
do so. However, if we arrange the spoons and forks with part
of the spoon or fork at least 2cm away from the walls of the
silverware rack, then we achieve a grasping success rate of
about 75%.

Some of the failures were because some parts of the object
were not perceived; therefore the arm would hit and move the
object resulting in a failed grasp. In such cases, we believe
an algorithm that uses haptic (touch) feedback would signifi-
cantly increase grasp success rate. Some of our failures were
also in cases where our algorithm correctly predicts a grasp-
ing point, but the arm was physically unable to reach that
grasp. Therefore, we believe that using an arm/hand with
more degrees of freedom, will significantly improve perfor-
mance for the problem of unloading a dishwasher.

Figure 15: Dishwasher experiments: Failure case. For some
configurations of certain objects, it is impossible for our 5-
dof robotic arm to grasp it (even if a human were controlling
the arm).

6.4 Experiment 4: Grasping kitchen and office
objects

Our long-term goal is to create a useful household robot that
can perform many different tasks, such as fetching an object

in response to a verbal request and cooking simple kitchen
meals. In situations such as these, the robot would know
which object it has to pick up. For example, if the robot was
asked to fetch a stapler from an office, then it would know that
it needs to identify grasping points for staplers only. There-
fore, in this experiment we study how we can use information
about object type and location to improve the performance of
the grasping algorithm.

Consider objects lying against a cluttered background such
as a kitchen or an office. If we predict the grasping points
using our algorithm trained on a dataset containing all five
objects, then we typically obtain a set of reasonable grasping
point predictions (Figure 16, left column). Now suppose we
know the type of object we want to grasp, as well as its ap-
proximate location in the scene (such as from an object recog-
nition algorithm[Gould et al., 2007]). We can then restrict
our attention to the area of the image containing the object,
and apply a version of the algorithm that has been trained
using only objects of a similar type (i.e., using object-type
specific parameters, such as using bowl-specific parameters
when picking up a cereal bowl, using spoon-specific param-
eters when picking up a spoon, etc). With this method, we
obtain object-specific grasps, as shown in Figure 16 (right
column).

Achieving larger goals, such as cooking simple kitchen
meals, requires that we combine different algorithms such
as object recognition, navigation, robot manipulation, etc.
These results demonstrate how our approach could be used
in conjunction with other complementary algorithms to ac-
complish these goals.

6.5 Experiment 5: Grasping using 7-dof arm and
three-fingered hand.

In this experiment, we demonstrate that our grasping point
prediction algorithm can also be used with other robotic
manipulation platforms. We performed experiments on the
STAIR 2 robot, which is equipped with a 7-dof arm and a
three-fingered Barrett hand. This is a more capable manipu-
lator than a parallel plate gripper, in that its fingers can form
a large variety of configurations; however, in this experiment
we will use the hand only in a limited way, specifically, a con-
figuration with the two fingers opposing the third one, with all
fingers closing simultaneously. While there is a large space
of hand configurations that one would have to consider in or-
der to fully take advantage of the capabilities of such a hand,
identifying a point at which to grasp the object still remains
an important aspect of the problem, and is the focus of the

[14]
Saxena et al.,p. 12
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Humanoid Hands
I 24 DOF (20 controllable) - the human hand has ≈ 22 DOF
I powered by air-muscles

with E = [e1 | · · · en] and Σ = diag(σ2
1 , · · · , σ2

n). The
eigenvectors associated to the highest M eigenvalues of R
are then defined as the synergy vectors. The selection of the
number of synergies M is usually made taken into account
the amount of variance that is left out by not considering the
lowest ”energy” eigenvectors. Let us define the cumulative
variance function as:

c(m) =

∑m
i=1 σ

2
i∑N

i=1 σ
2
i

× 100% (6)

The value of M is typically chosen such as c(M) takes about
80% – 90% of the overall variance.

While PCA has been used successfully in previous studies,
more advanced (e.g. non-linear) algorithms also deserve con-
sideration. However, there are two arguments that motivate
the use of PCA in this work: first, the synergies reconstructed
by PCA have a meaningful interpretation, and second, the
transformation can be inverted, so that trajectories calculated
in synergy-space can be mapped back to joint-space for robot
control easily.

B. Precision Grasp Synergies

We perform independent statistical analysis for a selection
of 8 precision grasp types from the taxonomy of [18]. A
few human subjects tele operated the robot hands using a
data-glove device in order to grasp different objects using
each of the selected grasp types (see detail in Section III-
D). Then, PCA analysis was performed for all the grasp
trials of the same grasp type g, resulting in different synergy
spaces {sg0, Sg}. This allows to uncover some correlations
between joints that are stronger than others for particular
grasp types. The generation of instances of grasps is done
according to Eq. (1) selecting the synergy matrix and mean
vector corresponding to the desired grasp type.

III. EXPERIMENTAL SETUP

In this section we describe in more detail the robot hands,
the data acquisition system and experimental protocol used
in the experiments.

A. The Shadow Robot Hand

The Shadow C5 air-muscle hand closely matches the size
and shape of a human hand and provides a total of 24 degrees
of freedom, with 4-DOF per finger and 5-DOF for the thumb,
as well as 2-DOF for the wrist and 1-DOF for palm flexure2.
See figure 1 for a photo of the hand and the kinematics
diagram. The distal phalanges of the fingers are underactu-
ated from the medial joints, resulting in a total of 20-DOF
controllable. All joints are tendon-driven and the tendons
on the C5-type hand are actuated by a pair of McKibben-
style air-muscles for each controllable joint. The muscles are
elastic and provide full passive compliance, resulting in good
grasp stability for a large variety of static grasp poses. The
newer C6-type hand has the same mechanical structure, but
the tendons are driven by electric motors, resulting in faster
actuation.

2Shadow Robot Dexterous Hand, www.shadowrobot.com

Fig. 1. The Shadow hand at Hamburg University.

B. The iCub Hand

The iCub is a robot baby based on an 18 month to 2.5
year old child developed in the EU funded project RobotCub
[19]. The iCub hands have a total of 19 degrees-of-freedom
(excluding wrist) but only 9 actuators. By careful design of
the coupled joints the dexterity of the hand was maximised
while keeping the actuators to a minimum [20]. Thumb,
index, ring and middle fingers have 4 joints: metacarpal,
proximal, medial and distal phalanxes. The middle finger
lacks the metacarpal joint because its adduction/abduction is
less significant than the other fingers. There are 9 motors
in each hand: 3 for the thumb, 2 for the index, 2 for the
middle finger, 1 for the adduction/abduction and 1 for the
coupled ring and little fingers. A photograph of the hand of
the ISR–Lisbon iCub is shown in Fig. 2.

Fig. 2. The hand of the iCub at ISR–Lisboa.

C. Teleoperation

In principle, any means to control the robot hand can be
used to perform the grasps required for the extraction of
the grasp synergies. However, direct tele-operation of the
robot from a calibrated data-glove has proven to be the
most efficient way to perform the experiments, because this
approach exploits the experience of the humans (and their
own grasp synergies).

The Immersion CyberGlove-II data-glove 3 is used to tele-
operate the Shadow and the iCub hands for the experiments.

The CyberGlove-II provides a total of 22 sensors, with
three flexure sensors per finger, three abduction sensors
placed between the fingers, and one palm-flexure sensor.
Four sensors measure the thumb position, and two sensors

3Cyberglove systems, www.cyberglovesystems.com
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Figure: Shadowhand at University of Hamburg

31 / 35



Introduction
Applications

Manipulation
Goals and Problem

Configuration Space

Kinematics

Planning
Approaches
Roadmap Techniques

Cell-Decomposition

Artificial Potential
Methods

Probabilistic Roadmaps

Grasping
Basic Grasping

Supervised Learned
Grasping

Humanoid Hands

Postural Grasp Synergies

References

Grasping Approaches

I Analytical Approach:
Determine grasping points on the object and compute finger motions via
Inverse Kinematics (manipulation planning).

I Empirical Classification:
Analyze and classify human grasping behaviour and map (primitive sequences
of) motions to robotic hands.
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Eigengrasps

I About 80% of human grasps (22 DOF) can be approximated by only a view
dimensions.

I All grasps can be described by a couple of different hand poses.

Idea: Formalize suitable hand poses as eigengrasps and compute appropriate
grasp behavior for different 3D-Shapes (and hands).
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Postural Grasp Synergies

[15] Bernadino et al. - "Precision Grasp Synergies for Dexterous Robotic Hands"

I Grasp Synergies are correlating configurations of hand joints.

are provided for the wrist. The glove may be considered the
benchmark input-device for recording human hand pose.

Due to the different sensor layout and sensor resolution,
as well as different robot hand kinematics, a mapping is
required to translate from the CyberGlove sensor values to
the corresponding hand joint angles. Even for a single test-
person, a slightly different fit of the glove will result in
differing measured joint angles between different experiment
runs. During a interactive calibration sequence the acquisi-
tion software displays images of a set of carefully selected
hand poses used for calibration. For each hand pose, the user
is asked to shape her hand accordingly, and the joint-values
from the glove are sampled and stored. Once all hand poses
from the calibration set have been recorded, a least squares
regression method is used to calculate the mapping from the
glove angles to the robot hand joint angles. Nevertheless,
the mapping is not perfect and calibrations errors must be
compensated actively by the test-persons while controlling
the actual robot hands on executing the grasps.

D. The Protocol

For the recordings targeting the postural synergies, we
used a set of twelve prototype objects. Given that most
objects can be grasped at different parts (side, top, etc.)
corresponding to different hand apertures, we defined 20
possible grasp postures as defined in table 4. See figure 3
for a photo of all objects together. The objects include
three basic shapes (sphere, cylinder, box), different object
diameters matched to typical human grasping tasks, and
different materials (sponge, rubber, wood, metal).

Fig. 3. The set of prototype objects for grasping. The objects include three
basic shapes (sphere, cylinder, box), different object diameters matched to
typical human grasping tasks, and different materials (sponge, rubber, wood,
metal).

We decided to record grasps for eight precision-grasp
classes from the grasp taxonomy. These are tripod, palmar
pinch, lateral, writing tripod, parallel-extension, adduction-
grip, tip pinch, and lateral tripod, and are illustrated in Fig.
5.

The pinch and tripod grasps were selected because of
their focus on manipulability of the target objects, while
adduction-grip tests the abduction-joints of the Shadow and
iCub hands.

During the experiments, the objects were presented to the
test-persons in a fixed order (spheres first, then cylinders
and boxes), but only for those grasps that were possible

object name and grasp pose width height length material
big green ball 86 86 86 sponge
medium green ball 64 64 64 rubber
small white ball 54 54 54 sponge
big red cylinder, top 64 76 76 metal
big red cylinder, side 64 76 76 metal
medium green cylinder, top 38 38 38 sponge
medium green cylinder, side 38 38 38 sponge
small red cylinder, top 59 27 27 wood
small red cylinder, side 59 27 27 wood
pen, side 150 12 12 metal
small purple cube 30 30 30 wood
large blue box, long side 77 39 39 sponge
large blue box, short side 77 39 39 sponge
medium orange box, long side 60 30 30 wood
medium orange box, short side 60 30 30 wood
small red box, long side 60 14 29 wood
small red box, short side 60 14 29 wood
small red box, medium side 60 14 29 wood
large yellow box, short side 80 80 38 sponge
large yellow box, long side 80 80 38 sponge

Fig. 4. Attributes of the prototype objects from the IST object set used for
the recordings. Values in bold indicate the object dimensions along which
opposition forces are applied. Dimensions are in millimeters.

Fig. 5. The precision grasp types selected for the experiments: tripod,
palmar pinch, lateral, writing tripod, parallel extension, adduction grip,
lateral tripod.

given the hand kinematics, or useful given the task. For the
tripod, palmar pinch and tip-pinch, all object configurations
were feasible. However, the lateral, lateral tripod and parallel
extension grips were not feasible on the configurations
requiring a large distance between the contact points. Also
the writing tripod and adduction grip only make sense for
configurations with a short distance between the contact
points. Data collection on the Shadow hand involved 4
persons while on the iCub hand we had 5 subjects. Table
6 shows the number of trials of each grasp type performed
by each test-person and overall in the Shadow hand and iCub
hand datasets.

grasp type trials per subject trials on Shadow trials on iCub
tripod 20 80 100

palmar pinch 20 80 100
lateral 12 48 60

writing tripod 3 12 15
parallel extension 14 56 70

adduction grip 3 12 15
tip pinch 20 80 100

lateral tripod 15 60 75
all 107 428 535

Fig. 6. Number of grasps of a certain type performed by each test-person
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are provided for the wrist. The glove may be considered the
benchmark input-device for recording human hand pose.

Due to the different sensor layout and sensor resolution,
as well as different robot hand kinematics, a mapping is
required to translate from the CyberGlove sensor values to
the corresponding hand joint angles. Even for a single test-
person, a slightly different fit of the glove will result in
differing measured joint angles between different experiment
runs. During a interactive calibration sequence the acquisi-
tion software displays images of a set of carefully selected
hand poses used for calibration. For each hand pose, the user
is asked to shape her hand accordingly, and the joint-values
from the glove are sampled and stored. Once all hand poses
from the calibration set have been recorded, a least squares
regression method is used to calculate the mapping from the
glove angles to the robot hand joint angles. Nevertheless,
the mapping is not perfect and calibrations errors must be
compensated actively by the test-persons while controlling
the actual robot hands on executing the grasps.

D. The Protocol

For the recordings targeting the postural synergies, we
used a set of twelve prototype objects. Given that most
objects can be grasped at different parts (side, top, etc.)
corresponding to different hand apertures, we defined 20
possible grasp postures as defined in table 4. See figure 3
for a photo of all objects together. The objects include
three basic shapes (sphere, cylinder, box), different object
diameters matched to typical human grasping tasks, and
different materials (sponge, rubber, wood, metal).

Fig. 3. The set of prototype objects for grasping. The objects include three
basic shapes (sphere, cylinder, box), different object diameters matched to
typical human grasping tasks, and different materials (sponge, rubber, wood,
metal).

We decided to record grasps for eight precision-grasp
classes from the grasp taxonomy. These are tripod, palmar
pinch, lateral, writing tripod, parallel-extension, adduction-
grip, tip pinch, and lateral tripod, and are illustrated in Fig.
5.

The pinch and tripod grasps were selected because of
their focus on manipulability of the target objects, while
adduction-grip tests the abduction-joints of the Shadow and
iCub hands.

During the experiments, the objects were presented to the
test-persons in a fixed order (spheres first, then cylinders
and boxes), but only for those grasps that were possible

object name and grasp pose width height length material
big green ball 86 86 86 sponge
medium green ball 64 64 64 rubber
small white ball 54 54 54 sponge
big red cylinder, top 64 76 76 metal
big red cylinder, side 64 76 76 metal
medium green cylinder, top 38 38 38 sponge
medium green cylinder, side 38 38 38 sponge
small red cylinder, top 59 27 27 wood
small red cylinder, side 59 27 27 wood
pen, side 150 12 12 metal
small purple cube 30 30 30 wood
large blue box, long side 77 39 39 sponge
large blue box, short side 77 39 39 sponge
medium orange box, long side 60 30 30 wood
medium orange box, short side 60 30 30 wood
small red box, long side 60 14 29 wood
small red box, short side 60 14 29 wood
small red box, medium side 60 14 29 wood
large yellow box, short side 80 80 38 sponge
large yellow box, long side 80 80 38 sponge

Fig. 4. Attributes of the prototype objects from the IST object set used for
the recordings. Values in bold indicate the object dimensions along which
opposition forces are applied. Dimensions are in millimeters.

Fig. 5. The precision grasp types selected for the experiments: tripod,
palmar pinch, lateral, writing tripod, parallel extension, adduction grip,
lateral tripod.

given the hand kinematics, or useful given the task. For the
tripod, palmar pinch and tip-pinch, all object configurations
were feasible. However, the lateral, lateral tripod and parallel
extension grips were not feasible on the configurations
requiring a large distance between the contact points. Also
the writing tripod and adduction grip only make sense for
configurations with a short distance between the contact
points. Data collection on the Shadow hand involved 4
persons while on the iCub hand we had 5 subjects. Table
6 shows the number of trials of each grasp type performed
by each test-person and overall in the Shadow hand and iCub
hand datasets.

grasp type trials per subject trials on Shadow trials on iCub
tripod 20 80 100

palmar pinch 20 80 100
lateral 12 48 60

writing tripod 3 12 15
parallel extension 14 56 70

adduction grip 3 12 15
tip pinch 20 80 100

lateral tripod 15 60 75
all 107 428 535

Fig. 6. Number of grasps of a certain type performed by each test-person
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I They are computed by the most significant correlations of joint
configurations in the eigengrasps via PCA.
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Postural Grasp Synergies
Fig. 10. In-hand manipulation synergies on the iCub hand. From top
to bottom: parallel-extension translation; tip-pinch closure; tripod rotation;
palmar-pinch rotation; writing-tripod rotation. Three example finger posi-
tions are shown for each motion.

Fig. 11. In-hand manipulation synergies on the Shadow hand. From top to
bottom: tip-pinch translation; tip-pinch closure; tripod rotation (experiment);
tripod closure (simulation) and tripod rotation (simulation).
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