Image Processing for Object Recognition

Integrated Seminar Intelligent Robotics

Daniel Ahlers

2ahlers@informatik.uni-hamburg.de

University of Hamburg MIN Faculty Department Informatics

June 5, 2016

Table of Contents

- 1 Introduction
- 2 Edge Detection Canny Edge Detector
- 3 Object Recognition

SIFT

Feature Description Feature Matching

SURF

Feature Detection Feature Description Feature Matching

Object Recognition

- Identification of objects
- By sound, touching or image processing
- Faces, pedestrians or objects

Object Recognition

Problem

- Identifying object by pixels is not very useful
 - Different lighting
 - Different color
 - Other perspective
 - Rotated
 - Different scaling
 - ...

What is an Edge?

- An edge is a line
- Change in color, brightness or structure
- Straight or curved

Edge Detection

Object Recognition

Canny Edge Detector


- Algorithm to detect edges in 2D-images
- By John F. Canny in 1986 [Canny, 1986]
- Can only handle grayscale pictures

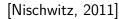
Canny Edge Detector

Apply Gaussian filter

Canny Edge Detector

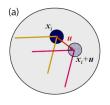
Find intensity gradients

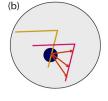
[Nischwitz, 2011]

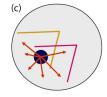


Canny Edge Detector

- 3 Apply non-maximum suppression
- 4 Apply double threshold
- Track edges by hysteresis




Object Recognition by Edges


- Not useful
- Other perspective
- Rotated
- Different objects with same edges

Why not use Edges?

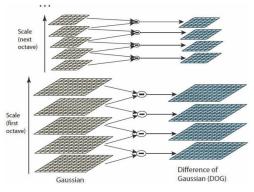
[Szeliski, 2010]

Features

- A feature is a point to describe the object
- Corners
- Crossing of edges
- Regions with constant properties
- Also called interest points

Object Recognition

- Feature detection
- Feature description
- Feature matching



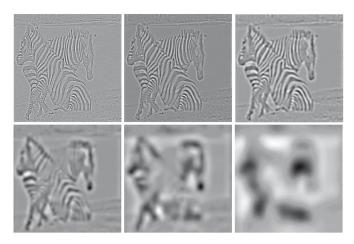
SIFT

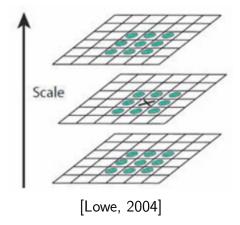
- Scale Invariant Feature Transform
- By David Lowe in 2004 [Lowe, 2004]
- Can handle:
 - Different scales
 - Changes in viewpoint
 - Rotation
 - Noise
 - Different illumination

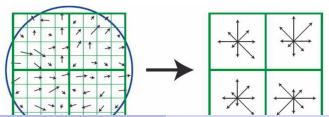
SIFT uses the difference of Gaussian(DoG)



[Lowe, 2004]







- 16x16 pixels around keypoint
- 4x4 groups with 4x4 pixels
- For each pixel: gradient with 36 directions
- Grouped with 8 directions
- Normalized and saved in 128 dimensional vector

Feature Matching

- Compared by Euclidean distance
- Second closest at least 20% away

SURF

- Speed Up Robust Features
- By Herbert Bay, et al. in 2006 [Bay et al., 2006]
- Can handle:
 - Different scales
 - Changes in viewpoint
 - Rotation
 - Noise
 - Different illluminations

- SIFT uses the determinant of Hessian(DoH)
- Calculate an integral image

$$I_{\sum}(x,y) = \sum_{i=0}^{i \le x} \sum_{j=0}^{j \le y} I(i,j)$$

Original

5	2	3	4	1
1	5	4	2	3
2	2	1	3	4
3	5	6	4	5
4	1	3	2	6

Integral

5	7	10	14	15			
6	13	20	26	30			
8	17	25	34	42			
11	25	39	52	65			
15	30	47	62	81			

Calculate Hessian matrix

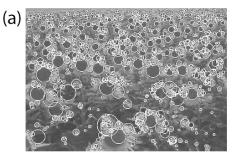
$$H(x,\sigma) = \begin{pmatrix} L_{xx}(x,\sigma) & L_{xy}(x,\sigma) \\ L_{xy}(x,\sigma) & L_{yy}(x,\sigma) \end{pmatrix}$$

- The determinant can measure local change
- Points are chosen when the determinant is maximal

- Scale is implemented by box filters
- Sizes: 9x9, 15x15, 21x21, 27x27 ...

Orientation

- circular area around the feature point
- Oriented with a Haar wavelet responses that is weighed by a Gaussian function
- The longest Vector defines the orientation of the feature



Description

- Square region around the feature
- Oriented along the orientation
- Split into 16 regions (4x4)
- Haar wavelet responses with 5x5 sample points for each region
- Summed up to a 4 dimensional vector
- All vectors combined to 64 dimensional vector weighed by a Gaussian function

Description

[Bay et al., 2006]

Feature Matching

- Compared by Euclidean distance
- Second closest at least 20% away

Bibliography I

Bay, H., Tuytelaars, T., and Van Gool, L. (2006).

Surf: speeded up robust features.

In Proceedings of the 9th European conference on Computer Vision - Volume Part I, ECCV'06, pages 404–417, Berlin, Heidelberg.

Springer-Verlag.

Bibliography II

- Canny, J. (1986).
 A computational approach to edge detection.

 IEEE Trans. Pattern Anal. Mach. Intell.,
 8(6):679–698.
- Lowe, D. G. (2004).
 Distinctive image features from scale-invariant keypoints.

Int. J. Comput. Vision, 60(2):91–110.

Bibliography III

- Nischwitz, A. (2011). Computergrafik und Bildverarbeitung. 2, Band II: Bildverarbeitung. Vieweg + Teubner, Wiesbaden.
- Szeliski, R. (2010).

 Computer Vision: Algorithms and Applications.

 Springer-Verlag New York, Inc., New York, NY, USA, 1st edition.

