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Motivation

= |mitation Learning is a basic robotic learning method
= Not all animals can imitate

= Open door for non-robotic-experts to do research on
robotics
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Basics and Definition (1)

“Imitation Learning is a means of learning and developing
new skills from observing these skills performed by another

agent.” [2]

Other terms: Learning from Demonstration, Learning by
Observation, etc.

Demonstration

* Who involve?

« What to demonstrate?

 How to demonstrate?
= Tele-operate
= Shadowing
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Basics and Definition (2)

D: Demonstration
zt : observed state
at : action

T policy
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LfD Policy Derivation

Teacher D Policy i
Demonstrations "| Derivation
Policy Execution
(single cycle) Z’ p
L Jﬂ
World -
a ‘

Control policy derivation and execution [1]

Imitation Learning




Approaches

= Three core approaches:
« Mapping Function
« System Model
* Plans
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Taxonomy

Approaches Learning Techniques

Mapping functions Classification Low Level Robot Actions
Basic High Level Actions
Complex High Level Action

Regression At Run Time
(Mapping Functions
Approximation)

Prior Run Time

Prior Execution Time

System Models Reward Based Learning  Engineering Reward Functions
Learning Reward Functions

Plans Using Planner
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Mapping Function Approach (1)

= Directly map from state to action

D=((z',d')] { Learning ) n=f():Z-A R

Technique J

= 2 categories:
 Classification
* Regression
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Mapping Function Approach (2)

Classification

Regression

Robot states

Robot actions
Discreet value

Application 3 level of actions:

- Low Level

- Basic high level

- Complex high level
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Categorized input values

Robot states
Non-categorized input values

Multiple demonstration set of Robot actions
Continuous

Typically low level motions / behaviors
- Imitate prior run time

- Imitate at run time

- Imitate prior execution time

Imitation Learning



Classification low level action example

= Low-level actions: basic commands such as moving
forward or turning

= Corridor Navigation Domain [4]:
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Classification high basic level action example

= Basic high level actions: motion primitives are composed or
sequenced together

= Autonomous egg flipping [5]:
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Classification complex high level action
example

= Complex level control actions: behaviors are developed
prior to task learning

= Robots co-ordination to sort balls [6]:

Nguyen, Thi Linh Chi Imitation Learning

12



Regression at Run Time example

= Learning from demonstration through marble maze [7]:

Free Ro}l

‘
4
Nl
‘,,

-
"

Nguyen, Thi Linh Chi

ROH Off Wall Start of the

Other recorded
!_ e OB Roll to Corner starts of this End of the
. -’\ Primitive Roll to Corner Roll to Corner
- Primiti ve anmve
Incoming _—¥
Vel Vect
elocity Vector (___1_»,

Roll From Wall )
\1.5 X Marble /

\
I
s

!_ v -)( . \‘,/‘ Diameter Width

Imitation Learning

13



Regression prior Run Time example

= Humanoid plays air hockey [7]:
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Regression prior Execution Time example

= Learning Robot Soccer Skills from Demonstration [12]:
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System Model Approach

= |mitate through a world dynamic model T and reward
function R

A T(s'|s,a) 7
(S >
D=((z,a)] Learning R Policy m:Z—-A
Technique - — Ls)_ — -»| Derivation J
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System Model Approach Example

= Engineered reward functions: Traffic Simulator [8]

InterfaceServer

Graphic interface of Traffic Simulator
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1. Agent i: receive the best average quality (bg))
from all other agents (j # /). Quality for Agent
i 18 cq;.

2 Agent i: get state s for evaluation.

3. Agent i: calculate k= arg max;(bgq;),
for all agents (j # i).

4 Agenti: if cq; < d max(bg;):

a. Agent i: send agent k the current state s
and request advice.

b. Agent k: switch to best parameters and run
state s to produce its best guess at the
adequate response (g).

c. Agent k: return g to Agent /.

d. Agent i: process advice (g).

5. Agent i: run state s and produce response g,

Step of advice exchange between agents
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System Model Approach Example

= |Learned reward functions: Car Driving Simulator [9]
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Plans Approach

= |mitate through a state transition model T and set L of pre-
conditions and post-conditions of action A

D=|(Z',d")) \L{[preC.paﬂC”a) W
Learning ’ m:L= A
User Intentions T(s'ls,a) Planner >
>

Technique J
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Plans Approach Example (1)

= Robot with ball collection task [10]
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Algorithm 1 Precondition and Effect Filling

Input: Grounded actions {a,...,ay) from demonstration
Input: Preceding and Succeeding states ({78,758, }..-{ Sy TSan 1)

for each action

Output: Grounded actions {ay,.... ay) with filled preconditions and ef-

1:

00 SIahth otk

10:

11:
12:

13:
14:
15:

fects
GROUP grounded actions into Operators Oy,....0;, s.L
VO 0p=r.. 5 ﬂa_;,ak{a;..ak € op}. SUBSTITUTE(gj,a;) is in-
valid
For all Operators op do
Collect the action states {~S,;. %S4}V a; € op.
Remove inconsistent action states.
For all Operators op do
Get Preconditions®? +—— =8, A...A78, .ay,...,ap Eop
Effects:
If exists effect e},} .aj € op Adag € op where
Vyel, SUBSTITUTE(e, ., ) is invalid then
If exists predicates M=} g = Sa; where
arg(e} ) n arg(c") # 0 A
Wi i, SUBSTITUTE(e; 4 .e%a;) is invalid A il 3
~8,.where a;,a; € op then
Add conditional Effect condE f fect”P «— {cw?eﬂj}
Else
Add disjunctive Effect £ f fects™F «— eﬁj V E ffects”F
Else If S effect ¢, € Vil A 84,V 84 ) }ai,a; € op then
Add conjunctive Effect E f fects®F «— ef” MEffects“F
Fill in Preconditions and Effects for each action a; € op
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Plans Approach Example (2)

= Robot with ball collection task

Algorithm 2 Iearning Looping Plans from Example
Input: Partial Order (PO) Graph
Output: Generalized Looping Plan

1: Transitively reduce PO Graph

2: Parameterize trace step actions

3: Detect LOOPS(Actions ay,....ay)

4: Order Steps by links.

Pick Object Drop Object
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Evaluation

= |n common:

- Advantages:
= An easy learning method for robots
= Rely on instructor experience and goodwill
- Disadvantages:
= Learning quality affected by teacher’s performance
= Hard to obtain correct demonstration if the task is complex
= Things that cannot be learned through imitation

= Why does Imitation Learning open spaces for non-
roboticists to participate?

= What is the best approaches?

Nguyen, Thi Linh Chi Imitation Learning
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Summary

= Introduced Imitation learning method
= Introduced approaches
= Examples in robotics
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The End

Thank you for your attention.
Any question?
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