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1. Hidden Markov Model

Bayesian Network

- Graphical model of conditional probabilistic relation

- Directed acyclic graph (DAG)

G = V,E)
V: set of random variables

E: set of conditional dependencies

P(W) P(E) P(A)

Environment
(E)

P{D|W.E A)

http://www.intechopen.com/books/current-topics-in-public-health/from-creativity-to-artificial-neural-
networks-problem-solving-methodologies-in-hospitals




1. Hidden Markov Model

Hidden Markov Model

- Particular kind of Bayesian Network

- Modelling time series data

Observe ¥i ¥4
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http://sites.stat.psu.edu/~jiali/hmm.html



1. Hidden Markov Model

Hidden Markov Model

https://en.wikipedia.org/wiki/Viterbi_algorithm#Example



1. Hidden Markov Model

Hidden Markov Model
Observing a patient for 3 days:
+ Day 1: Cold
+ Day 2: Normal

+ Day 3: Dizzy

Question:
1)  Most likely sequence of health condition of the patient in last 3 days ?
2)  Most likely health condition of the patient in the 4t day ?



2. State estimation

State space

- Quantities that cannot be directly observed but can be inferred from sensor
data

- Examples: position and direction of robot in a room

- Notation:

X ={xy, x5, ... Xt}

P(X = x;):probabilty of sate equals to x at time t



2. State estimation

Measurement (Observation)
- Environment data provided by robot sensor
- Examples: distance to ground, camera images
- Notation:

Z={2,2,...,2; }

P(Z = z;):probabilty of measurement equals to z at time t



2.State estimation

Control data

- Information about the change of state in the
environment

- Examples: velocity of robot, temperature of a room,
an action of robot on environment objects

- Notation:

U= {ul,uZ, ...,ut}

P(U = u;): probabilty of measurement equals to z at time t



2.State estimation

Probabilistic Generative Laws

 State can be constructed on all past states,
measurements and controls:

P(X = x¢) = P(X = x¢1x0.t-1, Zo:t—1, Uo:t-1)
* Markov assumption:

P(X =x¢) = P(X = x¢|x¢e—1, Ug)
P(Z=2)=P(Z=z|x)
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2.State estimation

Belief distribution

e Belief:
- Internal knowledge of the robot about the true state
- Represent probability to each possible true sate

- Notation:

bel(xt) = p(xt |Z1:tr ul:t)

e Prediction:

m(xt) = p(x¢l21:6-1, U1:t)

* Correction: L
bel(x;) = F(bel(x;))
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3. Bayes Filter

Bayes Filter algorithm (continuous case)

1: Func_continous_Bayes_filter (bel(x;_1),us, z;)

2: for all x; do

3 bel(xe) = [ p(x¢|ug, xe—1)bel(xe_q)dx
4: bel(x,) = normalizer * p(z;|x;) bel(x;)
5 end

6 return bel(x;)
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3. Bayes Filter

Bayes Filters algorithm (discrete case)

1: Func_discrete_Bayes_filter (py t—1, Ut Zt)

2:

3
4.
5
6

forallkdo
Pre = 6 P(X¢|ue, Xem1 = X)Pit-1
Drc = normalizer * p(Zy|x¢)Prt
end

return Py

13



4 Histogram filter

Histogram Filter

Discrete Bayes filter estimation for continuous state spaces

State space decomposition:
Range(X;) = {x1: Ux ¢ U ooxpp ¢}

Foreveryi #k:ixjt Nxpe =0

In each region the posterior is a piecewise constant density:

For every state x; belongs to k" region:

Pkt
|k ¢l

p(x:) =
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4 Histogram filter

Histogram filter

* Problem: prior information is defined for individual states, not for
region !

- Refer to line 3, 4 of discrete Bayes filter algorithm

* Solution: approximating density of a region by a representative state of
that region.
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4 Histogram filter

Histogram filter

* Approximation of density values for regions:

p(Ztlxk,t) ~ p(Ztlx/k\,t)

P(xk,t|ut» xi,t—l) ~ normalizer * p(Xj¢|uUe, Xie—1)
* Precondition: all regions must have the same size.

* Now discrete Bayes filter algorithm is applicable !
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5. Binary filter with static state

Binary Bayes filter with Static State

e Belief is a function of measurement:
belt(x) — p(xlzl:t' ul:t) — p(xlzl:t)

* General algorithm:

1: Func_binary_Bayes_filter(l;_1, z;)

p(xlze) p(x)
1-p(X|z¢)

2: lt — lt—l + log

3:return l;
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. Binary filter with static state

Log odds ratio

p(x)
—p(x)

[(x) = log1

Avoids truncation problems when probabilities close to O or 1

Inverse measurement model:

Reduce complexity by using probability of state given
measurement data

Example: infer state of a door in an image is much easier than
infer an image from all other images of a close/open door.
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5. Binary filter with static state

Example of Binary filter: Occupancy grid mapping

- Estimate (generate) map from (noisy) sensor measurement data and
robot position

- General algorithm:

p(Map = Mlzy, x1.) = | | p(Cell = c is occupied|zy . x1.)
C

p(Cell = c is occupied|zq.;, x1.;) is a binary estimation problem
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6. Particle filter

Particle filter algorithm

* Represent the posterior density by a set of weighted random particles
* General algorithm:

1: Func_Particle_filter (X;_q, Us, Z¢)

2: X, =X, =0

3 fori=1toMdo

4 sample x} ~ p(xc|x}_y)

5: wi=p(z Ix)

6: X = X + (x{, W)

7 endfor

8 fori=1toMdo

9: draw i with probability « w}
10: add x| to X,

11: endfor

12: return X;
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6. Particle filter

Particle filter algorithm

Visualization of Particle Filter

i=1,....N=10 particles
5~ © . {x::)l‘Nl}

unweighted measure

compute importance M

. L B Try \J \J
weights = p(X.41Z;.14) 5 ® ¢ - e W)
resampling 8 & 8 ! b xONY
move particles § 3y ALY 1 & GONT)
_///\/\/\
predict p(X|z;..1) vl el U & e

http://www.juergenwiki.de/work/wiki/doku.php?id=public:particle_filter
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6. Particle filter

Properties of Particle filter algorithm

* Degree of freedom:

- Because of normalization we lost one degree of freedom:
deg=M —1

* Identical particles after resampling phase:

- Resampling with probability proportional to weight: after every iteration
we failed to draw one or more state sample
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6. Particle filter

Properties of Particle filter algorithm

e Deterministic sensor:

- Sensor with noise-free range: measurement data is
zero for most of state |

—All weights become zero.

* Particle deprivation problem:

- Resampling can wipe out all particles near the true
state

—=>incorrect states have larger weight !
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6. Particle filter

Application of Particle filter

- Tracking the state of a dynamic system modeled
by a Bayesian Network: Robot localization, SLAM,
robot fault diagnosis.

- Image segmentation: by generating a large number
of particles and gradually focus on particle with
desired properties

—>Ilmage processing, Medial image analysis



7. Summary

Summary

 Nonparametric filters represent posterior state as a function of previous
poster state

* Nonparametric filters does not rely on a fixed functional form of
posterior

» Histogram filter and Particle filter represent state space and posterior as
a finite set of data

* There is usually a trade-off between efficiency and level of detail of data
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