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Reinforcement Learning in a Nutshell - Basics of RL Continuous Reinforcement Learning

Classical Reinforcement Learning

Agent := algorithm that learns to interact with the environment.
Environment := the world (including actor)

Sutton and Barto (1998)

Goal:
optimize agent’s
behaviour wrt.
a reward signal.

Problem as Markov Decision Process (MDP): (S, A, R, T)
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Reinforcement Learning in a Nutshell - Basics of RL Continuous Reinforcement Learning

The General Procedure

Policy π := action selection strategy

I exploration and exploitation trade-off

I e.g. ε-greedy, soft-max, ...

Different ways to model the environment:

I value functions V (s), Q(s, a): cumulative discounted reward
expected after reaching state s (and after performing action a)
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Reinforcement Learning in a Nutshell - Standard Approaches Continuous Reinforcement Learning

Standard Algorithms
Sutton and Barto (1998)

Temporal-difference (TD) learning

V (st)← V (st) + α[rt+1 + γV (st+1)− V (st)]

Numerous algorithms are based on TD learning:

I SARSA

I Q-Learning

I actor-critic methods (details on next slide)
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Reinforcement Learning in a Nutshell - Standard Approaches Continuous Reinforcement Learning

Actor-Critic Models

A TD method with separate memory structure to explicitly
represent the policy independent of the value function.

Actor: policy structure

Critic: estimated value function

Sutton and Barto (1998)

The critic’s output, TD error,
drives all the learning.

I computationally cheap action selection

I biologically more plausible
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Reinforcement Learning in a Nutshell - Standard Approaches Continuous Reinforcement Learning

Why is RL so Cool?

I it’s how humans do

I sophisticated, hard-to-engineer behaviour

I can cope with uncertain, noisy, non-observable stuff

I no need for labels

I online learning

“The relationship between [robotics and reinforcement learning]
has sufficient promise to be likened to that between physics and
mathematics” Kober and Peters (2012)
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Reinforcement Learning in a Nutshell - Motivation: The Continuity Problem Continuous Reinforcement Learning

The Continuity Problem

So far: discrete action and state spaces.
Problem: world ain’t discrete.

Example: moving on a grid world

Continuous state spaces have already been investigated a lot.

Continuous action spaces, however, remain a problem.
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Tackling the Continuity Problem

1. Discretize spaces, then use regular RL methods
I e.g. tile coding: group space into binary features receptive fields
I But: How fine-grained? Where to put focus? Bad generalization ..

2. Use parameter vector ~θt of a function approximator for updates
I often neural networks are used and the weights as parameters
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RL in Continuous Environments - Continuous Actor Critic Learning Automaton (CACLA) Continuous Reinforcement Learning

CACLA — Continuous Actor Critic Learning Automaton
Van Hasselt and Wiering (2007)

I learns undiscretized continuous actions in continuous states

I model-free

I computes updates and actions very fast

I easy to implement (cf. pseudocode next slide)
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RL in Continuous Environments - Continuous Actor Critic Learning Automaton (CACLA) Continuous Reinforcement Learning

CACLA Algorithm

Van Hasselt (2011)

~θ: parameter vector
~ψ: feature vector
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RL in Continuous Environments - CACLA in Action Continuous Reinforcement Learning

A bio-inspired model of predictive sensorimotor integration
Zhong et al. (2012)

Elman (1990)

Latencies in sensory processing make it hard to do real time
robotics; noisy, inaccurate readings may cause failure.

1. Elman network for sensory prediction/filtering

2. CACLA for continuous action generation

Zhong et al. (2012)
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Robot Docking & Grasping Behaviour
Zhong et al. (2012)

Zhong et al. (2012)

https://www.youtube.com/watch?v=vF7u18h5IoY

I more natural and smooth behaviour

I flexible wrt. changes in the action space
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Conclusion

Challenges:

I problems with high-dimensional/continuous states and actions

I only partially observable, noisy environment

I uncertainty (e.g. Which state am I actually in? )
I hardware/physical system:

I tedious, time-intensive, costly data generation
I reproducibility

Solution approaches:

I partially observable Markov decision processes (POMDPs)

I use of filters: raw observations + uncertainty in estimates
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Thanks for your attention!

Questions?
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