

MIN Faculty Department of Informatics

SLAM

SLAM

Survey: Simultaneous Localization and Mapping

Martin Poppinga

University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

Technical Aspects of Multimodal Systems

23. November 2015

Outline

- 1. Motivation
- 2. History
- 3. Basics
- 4. Implementations
- 5. Conclusion

Outline

- 1. Motivation
- 2. History
- 3. Basics
- 4. Implementations
- 5. Conclusion

Motivation

Mobile Robotics

- (Partly) autonomous Systems
- Many applications
 - SAR (Search and Rescue)
 - Exploration (Areal, Underwater, Space)
 - Service
- Challenges
 - Mapping
 - Localization

SLAM

Challenge

- $\blacktriangleright \text{ Map} \rightarrow \text{Localization}$
- $\blacktriangleright \ \ Localization \rightarrow Map$
- Chicken-egg problem
- SLAM brings this together
- Different approaches
 - Filtering
 - Sensors

Outline

- 1. Motivation
- 2. History
- 3. Basics
- 4. Implementations
- 5. Conclusion

History

- First steps
 - In mid 80s
 - Mapping and localization
 - Limited in computation power
- Breakthrough
 - In mid 90s
 - Convergence of errors
 - Mapping and localization together
 - Demonstration on real systems
- Wide interest in 2000s

Outline

- 1. Motivation
- 2. History
- 3. Basics
- 4. Implementations
- 5. Conclusion

Definition

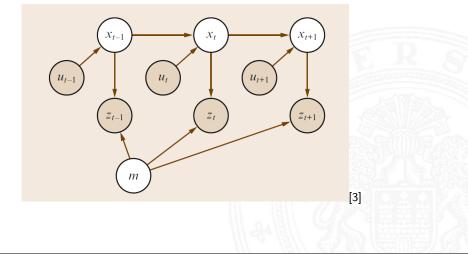
Basics

- Existing information
 - robots Controls / odometry
 - $U_T = \{u_1, u_2, u_3, ..., u_T\}$
 - Observations

• $Z_T = \{z_1, z_2, z_3, ..., z_T\}$

- Needed information
 - Map (with its features)

► m


Path of the robot

•
$$X_T = \{x_0, x_1, x_2, ..., x_T\}$$

Graphical Model

Probabilistic SLAM

- World is not perfect!
- Full SLAM
 - $p(X_T, m|Z_T, U_T)$
- Online SLAM
 - $p(x_t, m | Z_T, U_T)$
- This has to be estimated
- Different problems different estimators
- Choosing one based on the problem

Different Problems

Static vs dynamic

- Volumetric vs feature based
- Topologic vs metric
- Known vs unknown correspondence
- Large vs small uncertainty
- Active vs passive
- Single- vs multiagent
- Any time and any space
- \blacktriangleright \Rightarrow Lots of different approaches

- Static vs dynamic
- Volumetric vs feature based
- Topologic vs metric
- Known vs unknown correspondence
- Large vs small uncertainty
- Active vs passive
- Single- vs multiagent
- Any time and any space
- \blacktriangleright \Rightarrow Lots of different approaches

- Static vs dynamic
- Volumetric vs feature based
- Topologic vs metric
- Known vs unknown correspondence
- Large vs small uncertainty
- Active vs passive
- Single- vs multiagent
- Any time and any space
- ► ⇒ Lots of different approaches

- Static vs dynamic
- Volumetric vs feature based
- Topologic vs metric
- Known vs unknown correspondence
- Large vs small uncertainty
- Active vs passive
- Single- vs multiagent
- Any time and any space
- \blacktriangleright \Rightarrow Lots of different approaches

- Static vs dynamic
- Volumetric vs feature based
- Topologic vs metric
- Known vs unknown correspondence
- Large vs small uncertainty
- Active vs passive
- Single- vs multiagent
- Any time and any space
- ► ⇒ Lots of different approaches

- Static vs dynamic
- Volumetric vs feature based
- Topologic vs metric
- Known vs unknown correspondence
- Large vs small uncertainty
- Active vs passive
- Single- vs multiagent
- Any time and any space
- \blacktriangleright \Rightarrow Lots of different approaches

- Static vs dynamic
- Volumetric vs feature based
- Topologic vs metric
- Known vs unknown correspondence
- Large vs small uncertainty
- Active vs passive
- Single- vs multiagent
- Any time and any space
- ► ⇒ Lots of different approaches

- Static vs dynamic
- Volumetric vs feature based
- Topologic vs metric
- Known vs unknown correspondence
- Large vs small uncertainty
- Active vs passive
- Single- vs multiagent
- Any time and any space
- \blacktriangleright \Rightarrow Lots of different approaches

- Static vs dynamic
- Volumetric vs feature based
- Topologic vs metric
- Known vs unknown correspondence
- Large vs small uncertainty
- Active vs passive
- Single- vs multiagent
- Any time and any space
- \blacktriangleright \Rightarrow Lots of different approaches

Sensing

Basics

- Range
 - Laser Range sensors
 - Sonar
 - Tactile
 - **۰**...
- Visual
 - Camera
 - 3D Camera
- Other
 - Wi-fi
 - Sound

۰...

イロン イロン イヨン イロン

Algorithm

Basics

- Handling the errors
 - Location
 - Landmark sensoring
- Features in m
- Measurement model
- Motion model
- Three main filter types
- Will be partly presented in IR lecture

Filters

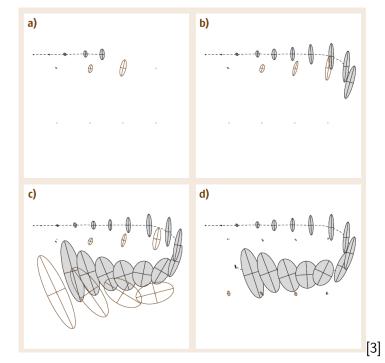
Kalman Filter

- The original technique in SLAM
- Reduction of errors
- Mathematical model
- Particle Filter
 - Sequential Monte Carlo
 - Particle for possible locations
- Graph Based

SLAM

Outline

- 1. Motivation
- 2. History
- 3. Basics
- 4. Implementations
- 5. Conclusion



EKF SLAM

- First variants of SLAM
- Kalman-filter based
- Standard kalman filter
- Provisional landmark list

FastSLAM

- Particle Filter
- Each particle one Position
- Rao-Blackwellization
- Independent features
- No revising of path on the fly
- Performance
- Widely used

SLAM

GraphSLAM

- Builds graph
 - Movement
 - Observations
- Flexible edges

Which to Use?

- Depends
- EKF SLAM
 - Quadratic with landmarks
 - Big maps problematic (submaps)
- GraphSLAM
 - Elegant solution
 - Full SLAM / offline
- FastSLAM
 - Data association
 - Efficient

DARPA

- US military research
- Self driving cars in desert
- GPS not precise enough
- Stanley, winner grand challenge 2005

SLAN

Project Tango

- Project by Google
- Phablet with special hardware
- Devkit available
- Targeted to consumer market

Outline

- 1. Motivation
- 2. History
- 3. Basics
- 4. Implementations
- 5. Conclusion

SLAM

Current & Future Research

- Popular on conferences
- Optimization
 - Computation power
 - Sensors
 - Algorithms
- New environments
 - Air
 - Underwater
- Feature matching
- Loop closure

Conclusion

- First productive systems
- Need improvement
- General purpose algorithm difficult
- Sensor quality important
- Frameworks & Tools
 - ROS
 - OpenSLAM
 - Mobile Robot Programming Toolkit (MRPT)

Conclusion

MIN Faculty Department of Informatics

SLAM

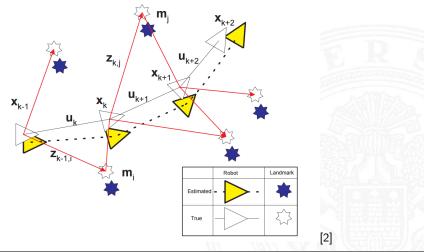
Thank you for your attention!

References

Conclusion

- J Aulinas, YR Petillot, J Salvi, and X Lladó. The slam problem: a survey. *CCIA*, 2008.
- [2] H. Durrant-Whyte and T. Bailey.
 Simultaneous localization and mapping: part i.
 IEEE Robotics & Automation Magazine, 13(2):99–110, 6 2006.
- [3] B Siciliano and O Khatib.

Springer handbook of robotics. 2008.



Conclusion

SLAM

The SLAM Problem

< ロ > < 団 > < 三 > < 三 > シ へ Q > <