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Neural Networks and Loss surfaces
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Shallow architectures vs Deep architectures
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Curse of dimensionality

VAV,
[ [ [ ]
ah./ / /
17
e
{ O
M & VAR T
3 "o /?
Feature 1

[5] Visiondummy.com



Compositionality
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Problems of deep architectures

? Convergence to apparent local minima
? Saturating activation functions

? Overfitting

? Long training times

? Exploding gradients

? Vanishing gradients

[7] Nature.com



Optimization in Neural networks(A broad
perspective)

e Under fitting
e Training time
e Overtfitting

[8] Shapeofdata.wordpress.com



Proliferation of saddle points

Random Gaussian error functions.

Analysis of critical points

Unique global minima & maxima(Finite volume)

Concentration of measure e iy
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Proliferation of saddle points (Random Matrix Theory)

e Hessian at a critical point
> Random Symmetric Matrix
e Eigenvalue distribution
= A function of error/energy
 Proliferation of degenerate saddles
e Error(local minima) = Error(global minima)

Wigner’s Semicircular Distribution
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Effect of dimensionality

e Single draw of a Gaussian process — unconstrained
° Single valued Hessian
o Saddle Point — Probability(0)
= Maxima/Minima - Probability (1)
e Random function in N dimensions
= Maxima/Minima — O(exp(-N))
o Saddle points — O(exp(N))



Analysis of Gradient Descent

o O = O — Vi

 Saddle points and pathological curvatures
* (Recall) High number of degenerate saddle points
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+ Direction ? Step size
+ Solution1: Line search 15|

- Computational expense WL

+ Solution2: Momentum
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Analysis of momentum

e [dea: Add momentum in persistent directions
e Formally

Vps1 = Ve — eV f(Or)

Ort+1 = O + Vst

+ Pathological curvatures.
? Choosing an appropriate momentum coefficient.
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Analysis of Nestrov’s Accelerated Gradient(NAG)

e Formally
Vkt1 = vk — £V (O + pg)

Or+1 = Ok + v

e Immediate correction of undesirable updates
 NAG vs Momentum

+ Stability

+ Convergence

= Qualitative behaviour around saddle points

ale, + pv,)

[11] Sutskever, Martens, Dahl, Hinton On the importance of initialization and momentum in
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Hessian based Optimization techniques

» Exploiting local curvature information
e Newton Method

 Trust Region methods

e Damping methods

e Iisher information criterion



Analysis of Newton’s method

 Local quadratic approximation

e Idea: Rescale the gradients by eigenvalues
+ Solves the slowness problem

- Problem: Negative curvatures

- Saddle points become attractors
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Analysis of Conjugate gradients

e Idea: Choose n ‘A’ — orthogonal search directions
= Exact step size to reach the local minima

° Step size rescaling by corresponding curvatures

> Convergence In exactly n steps

| = Steepest Descent

m—— Conjugate Gradient

+ Very eftective with the slowness problem

? Problem: Computationally expensive
- Saddle point structures

| Solution: Appropriate preconditioning

[13] Visiblegeology.com



Analysis of Hessian Free Optimization

e Idea: Compute Hd through finite differences
+ Avoids computing the Hessian
o Utilizes the conjugate gradients method
e Uses Gauss Newton approximation(G) to Hessian
+ Gauss Newton method 1s P.S.D
+ Effective in dealing with saddle point structures
? Problem: Dampening to make the Hessian P.S.D

- Anisotropic scaling — slower convergence
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Saddle Free Optimization

e Idea: Rescale the gradients by the absolute value of eigenvalues
? Problem: Could change the objectivel!
| Solution: Justification by generalized trust region methods.
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[14] Dauphin, Bengio Identifying and attacking the saddle point problem in high
dimensional non-convex optimization arXiv 2014
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Advantage of saddle free method with
dimensionality
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Overfitting and Training time

e Dynamics of gradient descent

e Problem of inductive inference

e Importance of initialization

e Depth independent Learning times
e Dynamical isometry

e Unsupervised pre training



Dynamics of Gradient Descent
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Learning Dynamics of Gradient Descent

e Input correlation to Identity matrix
e Ast — o, weights approach the input output correlation.
e SVD of the input output map.
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[15] Exact solutions to the nonlinear dynamics of learning in deep linear
neural networks. Andrew Saxe



Understanding the SVD

Canary, Salmon, Oak, Rose

Three dimensions i1dentified :
plant -animal dimension, fish-
birds, tflowers-trees.

S — Assoclation strength
U — Features of each dimension

V — [tem’s place on each
dimension.
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[16] A.M. Saxe, J.L. McClelland, and S. Ganguli. Learning hierarchical
category structure in deep neural networks. In Proceedings of the 35th
Annual Conference of the Cognitive Science Society, 2013.
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Results

» Co-operative and competitive interactions across connectivity modes.
e Network driven to a decoupled regime
 I'ixed points - saddle points

> No non-global minima

e Orthogonal initialization of weights of each connectivity mode

W32 = UBD,RT, W2 = RD,V'1"

° R - an arbitrary orthogonal matrix
= Eliminates the competition across modes
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Hyperbolic trajectories

Symmetry under scaling transformations

Noether’s theorem = Conserved quantity

Hyperbolic trajectories

Convergence to a fixed point manifold
Each mode learned in time O(t/s)

Depth independent learning rates. \\\Q\‘l‘l":ﬁ::?fi N
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[15] Exact solutions to the nonlinear dynamics of learning in deep linear
neural networks. Andrew Saxe
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Importance of initialization

e Dynamics of deeper multi layer neural networks.
e Orthogonal initialization.
 Independence across modes.
» Existence of an invariant manifold in the weight space.
e Depth independent learning times.
e Normalized initialization
- Can not achieve depth independent training times.
- Anisometric projection onto difterent eigenvector directions

- Slow convergence rates In some directions



Importance of Initialization

[17] inspirehep.net



Unsupervised pre-training

* No free lunch theorem

e Inductive bias

* Good basin of attraction

e Depth independent convergence rates.

e Initialization of weights in a near orthogonal regime
e Random orthogonal initializations

e Dynamical isometry with as many singular values ot the Jacobian as
possible at O(1)



Unsupervised learning as an inductive bias

* Good regularizer to avoid overfitting
e Requirement:

> Modes of variation in the input = Modes of variation in the input —
output map.

 Saddle point symmetries in high dimensional spaces
e Symmetry breaking around saddle point structures

* Good basin of attraction of a good quality local minima.
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Conclusion

* Good momentum techniques such as Nestrov’s accelerated gradient.
e Saddle Free optimization.

e Near orthogonal initialization of the weights of connectivity modes.
e Depth independent training times.

e Good initialization to find the good basin of attraction.

e Identity what good quality local minima are.
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Local Smoothness Prior vs curved submanifolds
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[18] Yoshua Bengio, Deep learning Summer school



Number of variations vs dimensionality

 Theorem: Gaussian kernel machines need at least k examples to learn a

function that has 2k zero crossings along some line.(Bengio, Dellalleau & Le
Roux 2007)

 Theorem: For a Gaussian kernel machine to learn some maximally
varying functions over d inputs requires O(22d) examples.
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[18] Yoshua Bengio, Deep learning Summer school
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Theory of deep learning

 Spin glass models

 String theory landscapes

* Protein folding

e Random Gaussian ensembles

ﬁ' Conformation Space

Potential
Energy

N Native State

[19] charlesmartin14.wordpress.com
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Proliferation of saddle points(Cont’d...)

Distribution of critical points as a function of index and energy.
= Index — fraction/number of negative eigenvalues of the Hessian
Error - Monotonically increasing function of index(0 to 1)
Energy of local minima vs global minima

Proliferation of saddle points

MNIST CIFAR
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[20] Identifying and attacking the saddle point problem in high-dimensional non-convex optimization, Yann Dauphin, Razvan
Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, Yoshua Bengio
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Ising spin glass model and Neural networks
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Loss surfaces of multilayer neural networks(H
layers)

* Equivalence to the Hamiltonian of the H-spin spherical spin glass model
= Assumptions of Variable independence

= Redundancy in network parametrization

= Uniformity

Existence of a ground state

Existence of an energy barrier (Floor)

Layered structure of critical points in the energy band

Exponential time to search for a global minima

Experimental evidence for close energy values of ground state and
Floor



Mean number of

Loss surfaces of multilayer neural networks
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[20] Loss surfaces of Multilayer Neural Networks, Anna Choromanska, Mikael Henaff, Michael Mathieu, Gérard Ben Arous, Yann
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Concentration of Measure

* Its very difficult for N independent random variables
to work together and pull the sum or any function
dependent on them very far away from its mean.

 Informally, A random variable that depends in a
Lipschitz way on many independent random variables
is essentially constant.

[21] High-dimensional distributions with convexity properties Bo’az Klartag Tel-Aviv University



