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Compositionality

•
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? Convergence to apparent local minima

? Saturating activation functions 

? Overfitting

? Long training times

? Exploding gradients

? Vanishing gradients

Problems of deep architectures 
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• Under fitting 

• Training time 

• Overfitting

Optimization in Neural networks(A broad 
perspective)
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• Random Gaussian error functions. 

• Analysis of  critical points

• Unique global minima & maxima(Finite volume)

• Concentration of  measure

Proliferation of saddle points 
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• Hessian at a critical point

▫ Random Symmetric Matrix

• Eigenvalue distribution 

▫ A function of  error/energy

• Proliferation of  degenerate saddles

• Error(local minima) ≈ Error(global minima) 

Proliferation of saddle points (Random Matrix Theory)

Wigner’s Semicircular Distribution
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• Single draw of  a Gaussian process – unconstrained

▫ Single valued Hessian 

▫ Saddle Point – Probability(0)

▫ Maxima/Minima - Probability (1)

• Random function in N dimensions

▫ Maxima/Minima – O(exp(-N))

▫ Saddle points – O(exp(N))

Effect of dimensionality
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•

• Saddle points and pathological curvatures

• (Recall) High number of  degenerate saddle points

+ Direction ? Step size 

+ Solution1: Line search 

- Computational expense

+ Solution2: Momentum

Analysis of Gradient Descent 
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• Idea: Add momentum in persistent directions 

• Formally

+ Pathological curvatures.

? Choosing an appropriate momentum coefficient. 

Analysis of momentum
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• Formally 

• Immediate correction of  undesirable updates

• NAG vs Momentum

+ Stability

+ Convergence

= Qualitative behaviour around saddle points

Analysis of Nestrov’s Accelerated Gradient(NAG)
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• Exploiting local curvature information 

• Newton Method

• Trust Region methods 

• Damping methods 

• Fisher information criterion 

Hessian based Optimization techniques 
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• Local quadratic approximation 

• Idea: Rescale the gradients by eigenvalues

+ Solves the slowness problem 

- Problem: Negative curvatures 

- Saddle points become attractors

Analysis of Newton’s method
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• Idea: Choose n ‘A’ – orthogonal search directions

▫ Exact step size to reach the local minima

▫ Step size rescaling by corresponding curvatures

▫ Convergence in exactly n steps

+ Very effective with the slowness problem 

? Problem: Computationally expensive

- Saddle point structures

! Solution: Appropriate preconditioning

Analysis of Conjugate gradients 
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• Idea: Compute Hd through finite differences 

+ Avoids computing the Hessian 

• Utilizes the conjugate gradients method 

• Uses Gauss Newton approximation(G) to Hessian 

+ Gauss Newton method is P.S.D 

+ Effective in dealing with saddle point structures 

? Problem: Dampening to make the Hessian P.S.D

- Anisotropic scaling        slower convergence

Analysis of Hessian Free Optimization
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• Idea: Rescale the gradients by the absolute value of  eigenvalues

? Problem: Could change the objective!

! Solution: Justification by generalized trust region methods. 

Saddle Free Optimization
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Advantage of saddle free method with 
dimensionality
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• Dynamics of  gradient descent

• Problem of  inductive inference

• Importance of  initialization 

• Depth independent Learning times

• Dynamical isometry

• Unsupervised pre training

Overfitting and Training time
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• Squared loss –

• Gradient descent dynamics –

Dynamics of Gradient Descent
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• Input correlation to Identity matrix 

• As t       ∞, weights approach the input output correlation.

• SVD of  the input output map. 

• What dynamics go along the way?

Learning Dynamics of Gradient Descent 
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•• Canary, Salmon, Oak, Rose 

• Three dimensions identified : 

plant -animal dimension, fish-

birds, flowers-trees.

• S – Association strength 

• U – Features of  each dimension

• V – Item’s place on each 

dimension. 

Understanding the SVD
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• Co-operative and competitive interactions across connectivity modes. 

• Network driven to a decoupled regime

• Fixed points - saddle points

▫ No non-global minima

• Orthogonal initialization of  weights of  each connectivity mode 

▫ R - an arbitrary orthogonal matrix

▫ Eliminates the competition across modes

Results
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Hyperbolic trajectories

• Symmetry under scaling transformations

• Noether’s theorem  Conserved quantity

• Hyperbolic trajectories

• Convergence to a fixed point manifold

• Each mode learned in time O(t/s)

• Depth independent learning rates.

• Extension to non linear networks

• Just beyond the edge of  orthogonal chaos
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• Dynamics of  deeper multi layer neural networks. 

• Orthogonal initialization.

• Independence across modes.

• Existence of  an invariant manifold in the weight space.

• Depth independent learning times.

• Normalized initialization 

- Can not achieve depth independent training times. 

- Anisometric projection onto different eigenvector directions 

- Slow convergence rates in some directions

Importance of initialization
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Importance of Initialization

28

[17] inspirehep.net



• No free lunch theorem

• Inductive bias

• Good basin of  attraction 

• Depth independent convergence rates. 

• Initialization of  weights in a near orthogonal regime 

• Random orthogonal initializations 

• Dynamical isometry with as many singular values of  the Jacobian as 

possible at O(1)

Unsupervised pre-training
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• Good regularizer to avoid overfitting

• Requirement: 

▫ Modes of  variation in the input = Modes of  variation in the input –

output map. 

• Saddle point symmetries in high dimensional spaces

• Symmetry breaking around saddle point structures

• Good basin of  attraction of  a good quality local minima.

Unsupervised learning as an inductive bias
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• Good momentum techniques such as Nestrov’s accelerated gradient. 

• Saddle Free optimization.

• Near orthogonal initialization of  the weights of  connectivity modes.

• Depth independent training times.

• Good initialization to find the good basin of  attraction. 

• Identify what good quality local minima are. 

Conclusion 
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Local Smoothness Prior vs curved submanifolds
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• Theorem: Gaussian kernel machines need at least k examples to learn a 
function that has 2k zero crossings along some line.(Bengio, Dellalleau & Le 
Roux 2007)

• Theorem: For a Gaussian kernel machine to learn some maximally 
varying functions over d inputs requires O(2^d) examples.

Number of variations vs dimensionality
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Theory of deep learning

• Spin glass models 

• String theory landscapes

• Protein folding 

• Random Gaussian ensembles 
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• Distribution of critical points as a function of index and energy. 
▫ Index – fraction/number of negative eigenvalues of the Hessian

• Error - Monotonically increasing function of index(0 to 1)

• Energy of local minima vs global minima

• Proliferation of saddle points

Proliferation of saddle points(Cont’d…)
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Ising spin glass model and Neural networks
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• Equivalence to the Hamiltonian of the H-spin spherical spin glass model
▫ Assumptions of Variable independence 

▫ Redundancy in network parametrization 

▫ Uniformity 

• Existence of  a ground state 

• Existence of an energy barrier (Floor)

• Layered structure of critical points in the energy band 

• Exponential time to search for a global minima

• Experimental evidence for close energy values of ground state and 
Floor

Loss surfaces of multilayer neural networks(H 
layers)
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Loss surfaces of multilayer neural networks
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• Its very difficult for N independent random variables 
to work together and pull the sum or any function 
dependent on them very far away from its mean.

• Informally, A random variable that depends in a 
Lipschitz way on many independent random variables 
is essentially constant. 

Concentration of Measure
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