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Introduction - Motivation Ant Colony Optimization

Motivation

Natural Inspiration
— based on the the behavior of ants seeking a path between their
colony and a source of food

Stigmergy

Unorganized actions of individuals serve as a stimuli for other individuals by
modifying their environment and result in a single outcome .

In short: A group of individuals that behave as a sole entity.
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Introduction - Motivation Ant Colony Optimization

Motivation (contd.)

» Swarm Intelligence method
> probabilistic technique — non-deterministic

» solve hard combinatorial optimization problems

Definition
Combinatorial Optimization Problem P = (5,9, f)
S ... finite set of decision variables,

Q... constraints,
f ... objective function to be minimized

Prominent example: Traveling Salesman
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Introduction - Metaheuristic

Ant Colony Optimization

Metaheuristic

Ant Colony Optimization (ACO)

Set parameters

Initialize pheromone trails

while termination condition not met do
ConstructAntSolutions
DaemonActions (optional)
UpdatePheromones

endwhile
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Theoretical Approach - Ant System Ant Colony Optimization

Ant System (AS)

> oldest most basic algorithm
» by Marco Dorigo in the 90s

Ant Movement

Probability for ant k to move from i to j in the next step:

a B
k_ Ti My
Pi= & .8
o Ve TH Ty
cjifeasible

where « and 8 control importance of pheromone T vs. heuristic value 7

Standard heuristic: n; = % where dj; is the distance between i and j
ij
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Ant Colony Optimization

Theoretical Approach - Ant System

Ant System (AS) (cont.)

Pheromone Update

Pheromone update for all ants that have built a solution in that iteration:
m
k
T (—(1—p)'Tij+ZATij
k=1

where p is the evaporation rate and AT,-Jk- is the quantity of pheromone laid on
edge (i) with
Q
Ak = X
T
where @ is a constant and Ly is the total length of the tour of ant k
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Theoretical Approach - Max-Min Ant System Ant Colony Optimization

Max-Min Ant System (MMAS)

» pheromone values are bound

> only the best ant updates its pheromone trails after solutions
have been found

Pheromone Update

Tij [(1 —p)-Ti+ Ar,fe“] "

Tmin

where AT,-j-’e“ = Lbl
est

Lpest can be the iteration best or global best tour
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Theoretical Approach - Ant Colony System Ant Colony Optimization

Ant Colony System (ACS)

» diversify the search through a local pheromone update

» pseudorandom proportional rule for ant movement

Local Pheromone Update
Performed by all ants after each construction step to the last traversed edge
Ti=1-¢)- T+

where 1 € (0,1] is the pheromone decay coefficient

and 1)y is the initial pheromone value

Pheromone Update

- (1—=p)-7j+p- A7 if (i,)) belongs to the best tour
o
! Tij otherwise
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Theoretical Approach - Overview

Theoretical Approach

Overview
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Algorithm

Ant Movement

Pheromones

Update
Evaporation

Ant System (AS)
1991

random proportional

T = (L—=p) T + >0y A‘réf

all paths

Max-Min Ant Sys-
tem (MMAX)
2000

random proportional

Tij [(1 —p)Tij+ A‘r,?esr] =
Tmin

best-so-far tour
min/max bound

Ant Colony System
(ACS)
1997

pseudorandom
proportional

local: TU:(I_TP)'TijJri[)-To

global:

T e (1—p) -7 +p- ATy
Tij

last step
best-so-far tour
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Problem Types Ant Colony Optimization

Problem Types

» Routing Problems
— Traveling Salesman, Vehicle Routing, Network Routing

» Assignment Problems
— Graph Coloring

» Subset Problems
— Set Covering, Knapsack Problem

» Scheduling
— Project Scheduling, Timetable Scheduling

» Constraint Satisfaction Problems

» Protein Folding
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Robot Path Planning with ACO Ant Colony Optimization

Robot Path Planning

Where was | suppose to go?
Whatis the best way to get
there?

Path Planning

Navigation
problems
Where was I?

What should | remember? How can | move?
Cognitive mapping Motion Control

Where am | going?

LOCALIZATION

NP-complete problem

static vs. dynamic environment
known vs. unknown environment
rerouting on collision

shortest path

vV VvyVvYyVvyy
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Robot Path Planning with ACO

Robot Path Planning Algl

Mohamad Z. et al. [8]

Ant Colony Optimization

Shortest Path in a static environment

Map Construction

Generate a global free space map where the robot can traverse
between the yellow nodes

Free space nodes (white) can be traversed by the robot
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Robot Path Planning with ACO

Robot Path Planning Algl

Mohamad Z. et al. [8]

Ant Colony Optimization

Ant Movement
Probability

p,-j:n;f-r,j?‘ with a =5, =5

1
distance between next point with
intersect point at reference line

Heuristic n =

Y Axis Y Axis
God point [8.8) i Coal poift (4.0)
4 N 0525)
3 é i o 3 i ‘n Distance A=?
¥ Disfance 4 ‘
] 2 2 P A, ASino=ss!
2 7 -0 A (22) DistanceB 3.
# shrtpoik|an | ] i
4 s{art poidt (1,1) P —Y xis
1 2 3 a X Axis Disiace B
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Robot Path Planning with ACO Ant Colony Optimization

Robot Path Planning Algl

Mohamad Z. et al. [8]

Pheromone Update
local — after each step from one node to another
global — after path calculation is finished

Local Evaporation

prevents accumulation of pheromone
7 = (1 — p) - 7 with p = 0.5

Global Reinforcement (AS)

m k
Tij = T Doy AT, Az = %
where
Q ...number of nodes

L ...length of path chosen by ant k
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Robot Path Planning with ACO Ant Colony Optimization

Robot Path Planning Algl

Mohamad Z. et al. [8]

Results

» comparison to a standard GA algorithm
» ACO faster with smaller number of iterations
(due to good state transition rule - distance to baseline)

No of Optimal path | Distance | Time(sec) | Iteration
Fun RPP algorithims GA Aco
1 12.6.14.1526 | 13.6476 133336 3 Ne | Optimal | Time | Iteration Time | Iieration
2 126141526 | 136476 | 18.7286 4 of | pah &
3 126.14.1526 13.6476 10.0510 3
I ‘
: 126141526 | 136476 | 84364 2 N ST ATA VT 10 104.606 )
5 126141526 13.6476 23.6816 5 3 526 147038 7 14 W
s A BLALE: hi LET| e 3| (136476 [114362 8 73552
i 261415 3647 890377 = =
= 4 cm) 310464 7 43 635 4

8 2614152 3647 54917 E s B § 00T -
9 2.6.14.15 2 3.647 2.0616 5 — 5 o
0 EXRERER] T647 177 Total Average 157.18 8 63.098 44

Total Average 5.4062 35
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Robot Path Planning with ACO

Robot Path Planning Alg2

Michael Brand et al. [2]

Ant Colony Optimization

Shortest path in a dynamic environment

> grid world of 20x20, 30x30 and 40x40
four possible movement directions: left, right, up, down
» basic AS approach

> re-routing after obstacles are added
» focus on re-initialization of pheromones

Global Initialization

7ij = 0.1 for every transition between blocks

Local Initialization

Gradient of pheromones around every object
Pheromone levels are decreased in a cyclic fashion by a certain fraction (50%)
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Robot Path Planning with ACO

Ant Colony Optimization

Robot Path Planning Alg2

Michael Brand et al. [2]

Results

Global Initialization
Map Size | 20x20 | 30x30 | 40x40
Iterations 151 277 148 Local Initialization: 1ot freration
Path Length 39 66 138
Local Initialization
Map Size 20x20 | 30x30 | 40x40
Iterations 122 84 69
Path Length 39 64 128

. e
Local Initialization: 1000th iteration
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Analysis - Comparison

Ant Colony Optimization

Comparison to other meta-heuristic techniques

» other techniques:
Genetic Algorithms (GA), Simulated Annealing (SA),
Particle Swarm Optimization (PSO), Tabu Search (TS)

> hard to compare in general — dependent on specific problem
instance, algorithm implementation and parameter settings
(No free lunch theorem)

> slow convergence compared to other approaches
— long runtime for small easy instances and fast, pretty good
results for complex instances

» ACO often performs really bad or really good
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Analysis - TSP Ant Colony Optimization

Traveling Salesman Problem

results for a small TSP instance with 20 nodes over multiple runs

Measures
ACO GA SA PSO TS
Parameters pheromone eva- population, temperature population size, tabu list length
poration crossover, annealing rate velocity
mutation
Convergence slow due to phe- rapid avoids trapping less rapid tabulist avoids
romone evapo- by deterioration trapping
ration moves in local optima
Intensification| ant movement, crossover, cooling, local search, tabulist,
Diversification| pheromone up- mutation solution accep- fitness neighbor selecti-
date tance strategy on
CPU 250 200 101 220 140
Time(s)
Path Length 300 200 99 250 97
Katinka Béhm [m] Q™ 20
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Analysis - Advantages and Drawbacks Ant Colony Optimization

Advantages and Drawbacks

Advantages Drawbacks

> inherent parallelism » randomness — not

> easy to implement on a basic guaranteed to find the
level — few parameters optimal solution

» possible to solve A/P-hard > slow convergence
problems » theoretical research is hard

» fast in finding near optimal — mostly rely on
solutions in comparison to experimental results

classical approaches

» robust — suitable for
dynamic applications
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Interesting Applications

Interesting Applications

Dexterous Manipulation:
Gripper Configuration

Determine forces extracted by robot
grippers to guarantee stability of the
grip without causing defect or damage
to the object.

Non-linear problem containing five
objective functions, nine constraints
and seven variables.
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Ant Colony Optimization

Image Processing: Edge Detection

() (©)

ﬁ<\ f 7 : n
. . r 2N\
!
{-
(o) (e)

Ants move from one pixel to another
and are directed by the local variation
of the images intensity values stored in
a heuristics matrix. The highest density
of the pheromone is deposited at the
edges.
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Recap Ant Colony Optimization

Recap

v

Swarm Intelligence

v

Inspired by ant colony movement

v

Three basic approaches
» Ant System
» Min-Max Ant System
» Ant Colony System

v

Application: Robot Path Planning

» Shortest path in static environment with free space map
» Shortest path in dynamic environment

» slow convergence but fast good solutions for complex problems

Katinka Bshm (=] = = = o> 23



MIN-Fakultat
Fachbereich Informatik
{21 Universitit Hamburg

References

Ant Colony Optimization

References

[1]

[2]

3]

(4]

5]

(6]

Katinka Bshm [m] =

Toolika Arora and Yogita Gigras.
A Survey of Comarison Between Various Meta-Heuristic Techniques for Path Planning Problem.
International Journal of Computer Engineering & Science, 3(2):62-66, November 2013.

Michael Brand, Michael Masuda, Michael Masuda, Nicole Wehner, and Xiao-Hua Yu.
Ant Colony Optimization Algorithm for Robot Path Planning.
International Conference On Computer Design And Appliations (ICCDA 2010), 3:436-440, 2010.

Marco Dorigo and Thomas Stiitzle.
Ant colony optimization.
MIT Press, 2004.

Marco Dorigo and Thomas Stiitzle.

International Series in Operations Research & Management Science 146, Ant Colony Optimization: Overview
and Recent Advances, chapter 8, pages 227-263.

Springer Science+Business Media, 2010.

Yogita Gigras and Kusum Gupta.
Ant Colony Based Path Planning Algorithm for Autonomous Robotic Vehicles.
International Journal of Artificial Intelligence & Applications (IJAIA), 3(6), November 2012.

Mauro Birattari Marco Dorigo and Thomas Stiitzle.
Ant Colony Optimization Artificial Ants as a Computational Intelligence Technique.
IEEE Computational Intelligence Magazine, 1556-603X(06):28—39, 2006.

Q> 24



MIN-Fakultat
Fachbereich Informatik
iti
{21 Universitit Hamburg

References Ant Colony Optimization

References (cont.)

[7] Seedarla Moses Mullar and R. Satya Meher.
Optimizing of Robot Gripper Configurations Using Ant Colony Optimization.
International Journal of Engineering Research & Technology (IJERT), 2(9), September 2013.

[8] Buniyamin N., Sariff N., Wan Ngah W.A.J., and Mohamad Z.
Robot global path planning overview and a variation of ant colony system algorithm.
International Journal of Mathematics and Computers in Simulation, 5(1), 2011.

[9] Alpa Reshamwala and Deepika P Vinchurkar.
Robot Path Planning using An Ant Colony Optimization Approach: A Survey.
International Journal of Advanced Research in Atrtificial Intelligence, 2(3), 2013.

Katinka Béhm [m] = = o > 25



	Introduction
	Theoretical Approach
	Robot Path Planning with ACO
	Analysis
	Interesting Applications
	Recap
	References

