Ant Colony Optimization Algorithm and Approaches in Robot Path Planning

Katinka Böhm

Universität Hamburg

Fakultät für Mathematik, Informatik und Naturwissenschaften Fachbereich Informatik

Technische Aspekte Multimodaler Systeme

January 4th, 2016

Structure

- 1. Introduction
- 2. Theoretical Approach
- 3. Robot Path Planning with ACO
- 4. Analysis
- 5. Interesting Applications
- 6. Recap
- 7. References

Universität Hamburg

Natural Inspiration

→ based on the the behavior of ants seeking a path between their colony and a source of food

Stigmergy

Unorganized actions of individuals serve as a stimuli for other individuals by modifying their environment and result in a single outcome .

In short: A group of individuals that behave as a sole entity.

Motivation (contd.)

- Swarm Intelligence method
- ▶ probabilistic technique → non-deterministic
- solve hard combinatorial optimization problems

Definition

Combinatorial Optimization Problem $P = (S, \Omega, f)$

 $S \dots$ finite set of decision variables,

 Ω ... constraints,

f ... objective function to be minimized

Prominent example: Traveling Salesman

Metaheuristic

Universität Hamburg

Ant Colony Optimization (ACO)

Set parameters Initialize pheromone trails

while termination condition not met do

ConstructAntSolutions

DaemonActions (optional)

UpdatePheromones

endwhile

Ant System (AS)

Universität Hamburg

- oldest most basic algorithm
- by Marco Dorigo in the 90s

Ant Movement

Probability for ant k to move from i to j in the next step:

$$p_{ij}^k = rac{ au_{ij}^lpha \cdot \eta_{ij}^eta}{\sum_{egin{subarray}{c} orall c_{il} ext{feasible}} au_{il}^lpha \cdot \eta_{il}^eta}$$

where α and β control importance of pheromone τ vs. heuristic value η Standard heuristic: $\eta_{ij} = \frac{1}{d_{ii}}$ where d_{ij} is the distance between i and j

Ant System (AS) (cont.)

Pheromone Update

Pheromone update for all ants that have built a solution in that iteration:

$$au_{ij} \leftarrow (1 -
ho) \cdot au_{ij} + \sum_{k=1}^m \Delta au_{ij}^k$$

where ρ is the evaporation rate and $\Delta \tau_{ij}^k$ is the quantity of pheromone laid on edge (ij) with

$$\Delta \tau_{ij}^k = \frac{Q}{L_k}$$

where Q is a constant and L_k is the total length of the tour of ant k

6

Max-Min Ant System (MMAS)

- pheromone values are bound
- only the best ant updates its pheromone trails after solutions have been found

Pheromone Update

$$au_{ij} \leftarrow \left[(1 -
ho) \cdot au_{ij} + \Delta au_{ij}^{best}
ight]_{ au_{min}}^{ au_{max}}$$

where
$$\Delta au_{ij}^{best}=rac{1}{L_{best}}$$

L_{best} can be the iteration best or global best tour

Ant Colony System (ACS)

- diversify the search through a local pheromone update
- pseudorandom proportional rule for ant movement

Local Pheromone Update

Performed by all ants after each construction step to the last traversed edge

$$\tau_{ij} = (1 - \psi) \cdot \tau_{ij} + \psi \cdot \tau_0$$

where $\psi \in (0,1]$ is the pheromone decay coefficient and ψ_0 is the initial pheromone value

Pheromone Update

$$au_{ij} \leftarrow egin{cases} (1-
ho) \cdot au_{ij} +
ho \cdot \Delta au_{ij} & ext{if } (i,j) \text{ belongs to the best tour} \\ au_{ij} & ext{otherwise} \end{cases}$$

Theoretical Approach - Overview

Theoretical Approach

Overview

Algorithm	Ant Movement	Pheromones	Update Evaporation
Ant System (AS) 1991	random proportional	$ au_{ij} \leftarrow (1-\rho) \cdot au_{ij} + \sum_{k=1}^m \Delta au_{ij}^k$	all paths
Max-Min Ant Sys- tem (MMAX) 2000	random proportional	$\tau_{ij} \leftarrow \left[(1 - \rho) \cdot \tau_{ij} + \Delta \tau_{ij}^{\textit{best}} \right]_{\tau_{\textit{min}}}^{\tau_{\textit{max}}}$	best-so-far tour min/max bound
Ant Colony System (ACS) 1997	pseudorandom proportional	$\begin{aligned} & \text{local: } \tau_{ij} = (1 - \psi) \cdot \tau_{ij} + \psi \cdot \tau_0 \\ & \text{global:} \\ & \tau_{ij} \leftarrow \begin{cases} (1 - \rho) \cdot \tau_{ij} + \rho \cdot \Delta \tau_{ij} \\ & \tau_{ij} \end{cases} \end{aligned}$	last step best-so-far tour

Problem Types

Universität Hamburg

- Routing Problems
 - → Traveling Salesman, Vehicle Routing, Network Routing
- Assignment Problems
 - → Graph Coloring
- Subset Problems
 - → Set Covering, Knapsack Problem
- Scheduling
 - → Project Scheduling, Timetable Scheduling
- Constraint Satisfaction Problems
- Protein Folding

Robot Path Planning

- \triangleright \mathcal{NP} -complete problem
- static vs. dynamic environment
- known vs. unknown environment
- rerouting on collision
- shortest path

Robot Path Planning Alg1

Mohamad Z. et al. [8]

Shortest Path in a static environment

Map Construction

Generate a global free space map where the robot can traverse between the yellow nodes

Free space nodes (white) can be traversed by the robot

21-		-22-			- 23 -				-G20
					13		15		
9		_10_		12		11	i		
			址		14		17_		30
		1		/		16		-18	
4-	5-		-6		1				
3			1	J.:		_19			
		- /	1		1			2,5	
SIL		2		8-			24		

Universität Hamburg

Robot Path Planning Alg1

Mohamad Z. et al. [8]

Ant Movement

Probability

$$p_{ij} = \eta_{ij}^{\beta} \cdot \tau_{ij}^{\alpha}$$
 with $\alpha = 5, \ \beta = 5$

Heuristic $\eta = \frac{1}{\text{distance between next point with}}$ intersect point at reference line

Universität Hamburg

Mohamad Z. et al. [8]

Pheromone Update

 $local \rightarrow after each step from one node to another$ global \rightarrow after path calculation is finished

Local Evaporation

prevents accumulation of pheromone $\tau_{ii} = (1 - \rho) \cdot \tau_{ii}$ with $\rho = 0.5$

Global Reinforcement (AS)

$$au_{ij} = au_{ij} + \sum_{k=1}^m \Delta au_{ij}^k, \quad \Delta au_{ij} = rac{Q}{L_k}$$
 where

 $Q \dots$ number of nodes

 L_k ...length of path chosen by ant k

Robot Path Planning Alg1

Mohamad Z. et al. [8]

Results

- comparison to a standard GA algorithm
- ► ACO faster with smaller number of iterations (due to good state transition rule distance to baseline)

No of	Optimal path	Distance	Time(sec)	Iteration
run				
1	1.2.6.14.15.26	13.6476	13.3536	3
2	1.2.6.14.15.26	13.6476	18.7286	4
3	1.2.6.14.15.26	13.6476	10.0510	3
4	1.2.6.14.15.26	13.6476	8.4564	2
5	1.2.6.14.15.26	13.6476	23.6816	5
6	1.2.6.14.15.26	13.6476	18.5721	4
7	1.2.6.14.15.26	13.6476	8.9377	2
8	1.2.6.14.15.26	13.6476	18.4917	4
9	1.2.6.14.15.26	13.6476	22.0616	5
10	1.2.6.14.15.26	13.6476	11.7273	3
	Total Average		15.4062	3.5

RPP algorithms		GA		ACO	
No of run	Optimal path & path cost	Time	Iteration	Time	Iteration
1	1.2.6.14.1	111.838	10	104.606	4
2	5.26	147.958	7	44.4	4
3	(13.6476	114.362	8	73.552	6
4	cm)	310.464	7	43.635	4
5	1	101.278	8	49.297	4
Tota	l Average	157.18	8	63.098	4.4

Robot Path Planning with ACO

Robot Path Planning Alg2

Michael Brand et al. [2]

Shortest path in a dynamic environment

- grid world of 20x20, 30x30 and 40x40 four possible movement directions: left, right, up, down
- basic AS approach
- re-routing after obstacles are added
- focus on re-initialization of pheromones

Global Initialization

 $au_{ij} = 0.1$ for every transition between blocks

Local Initialization

Gradient of pheromones around every object Pheromone levels are decreased in a cyclic fashion by a certain fraction (50%)

Robot Path Planning Alg2

Michael Brand et al. [2]

Results

Global Initialization

Map Size	20×20	30×30	40×40
Iterations	151	277	148
Path Length	39	66	138

Local Initialization

Map Size	20×20	30×30	40×40
Iterations	122	84	69
Path Length	39	64	128

Local Initialization: 1st iteration

Local Initialization: 1000th iteration

Comparison to other meta-heuristic techniques

- other techniques:
 Genetic Algorithms (GA), Simulated Annealing (SA),
 Particle Swarm Optimization (PSO), Tabu Search (TS)
- ► hard to compare in general → dependent on specific problem instance, algorithm implementation and parameter settings (No free lunch theorem)
- ▶ slow convergence compared to other approaches
 → long runtime for small easy instances and fast, pretty good results for complex instances
- ACO often performs really bad or really good

Traveling Salesman Problem

results for a small TSP instance with 20 nodes over multiple runs

Measures			1//		77777777
	ACO	GA	SA	PSO	TS
Parameters	pheromone eva- poration	population, crossover, mutation	temperature annealing rate	population size, velocity	tabu list length
Convergence	slow due to phe- romone evapo- ration	rapid	avoids trapping by deterioration moves	less rapid	tabulist avoids trapping in local optima
Intensification Diversification	ant movement, pheromone up- date	crossover, mutation	cooling, solution accep- tance strategy	local search, fitness	tabulist, neighbor selecti- on
CPU Time(s)	250	200	101	220	140
Path Length	300	200	99	250	97

Advantages and Drawbacks

Advantages

- inherent parallelism
- easy to implement on a basic level \rightarrow few parameters
- ightharpoonup possible to solve \mathcal{NP} -hard problems
- fast in finding near optimal solutions in comparison to classical approaches
- robust → suitable for dynamic applications

Drawbacks

- ▶ randomness → not guaranteed to find the optimal solution
- slow convergence
- theoretical research is hard
 - → mostly rely on experimental results

Interesting Applications

Jniversität Hamburg

Dexterous Manipulation: Gripper Configuration

Determine forces extracted by robot grippers to guarantee stability of the grip without causing defect or damage to the object.

Non-linear problem containing five objective functions, nine constraints and seven variables.

Image Processing: Edge Detection

Ants move from one pixel to another and are directed by the local variation of the images intensity values stored in a heuristics matrix. The highest density of the pheromone is deposited at the edges.

Recap

- Swarm Intelligence
- Inspired by ant colony movement
- ► Three basic approaches
 - Ant System
 - Min-Max Ant System
 - Ant Colony System
- Application: Robot Path Planning
 - ▶ Shortest path in static environment with free space map
 - Shortest path in dynamic environment
- slow convergence but fast good solutions for complex problems

References

- [1] Toolika Arora and Yogita Gigras.
 - A Survey of Comarison Between Various Meta-Heuristic Techniques for Path Planning Problem. *International Journal of Computer Engineering & Science*, 3(2):62–66, November 2013.
- [2] Michael Brand, Michael Masuda, Michael Masuda, Nicole Wehner, and Xiao-Hua Yu. Ant Colony Optimization Algorithm for Robot Path Planning. International Conference On Computer Design And Appliations (ICCDA 2010), 3:436–440, 2010.
- [3] Marco Dorigo and Thomas Stützle. Ant colony optimization. MIT Press, 2004.
- [4] Marco Dorigo and Thomas Stützle. International Series in Operations Research & Management Science 146, Ant Colony Optimization: Overview and Recent Advances, chapter 8, pages 227–263. Springer Science+Business Media, 2010.
- [5] Yogita Gigras and Kusum Gupta. Ant Colony Based Path Planning Algorithm for Autonomous Robotic Vehicles. International Journal of Artificial Intelligence & Applications (IJAIA), 3(6), November 2012.
- [6] Mauro Birattari Marco Dorigo and Thomas Stützle. Ant Colony Optimization Artificial Ants as a Computational Intelligence Technique. IEEE Computational Intelligence Magazine, 1556-603X(06):28–39, 2006.

References (cont.)

- [7] Seedarla Moses Mullar and R. Satya Meher.
 Optimizing of Robot Gripper Configurations Using Ant Colony Optimization.
 International Journal of Engineering Research & Technology (IJERT), 2(9), September 2013.
- [8] Buniyamin N., Sariff N., Wan Ngah W.A.J., and Mohamad Z. Robot global path planning overview and a variation of ant colony system algorithm. International Journal of Mathematics and Computers in Simulation, 5(1), 2011.
- [9] Alpa Reshamwala and Deepika P Vinchurkar. Robot Path Planning using An Ant Colony Optimization Approach: A Survey. International Journal of Advanced Research in Artificial Intelligence, 2(3), 2013.