

BIOSENSING FOR HEALTH APPLICATIONS

Department of Informatics Intelligent Robotics WS 2015/16

Hwei Geok Ng 18th January 2016

OUTLINE

- Introduction
- Biosensors and Biosensing Process
- Bioreceptors
- Biotransducers
- Case Study: Continuous Glucose Monitoring (CGM) Sensor
- Discussion
- Conclusion and Future Work

INTRODUCTION

- Biosensor in nature human sensory system
- Bioanalysis sensory organs
- Biotransducer central nervous system
- Human sensory system has limitation
- Gets help from biological organisms
- Biosensor = reaction of organisms + transduction system
- Biosensor: (i) bioreceptor, (ii) biotransducer [1]

BIOSENSORS AND BIOSENSING PROCESS

- Biosensing process:
 - (i) Analyte
 - (ii) Bioreceptor
 - (iii) Molecular recognition
 - (iv) Transducer
 - (v) Measurement
 - (vi) Data recording and display [1]

Figure 1: The Biosensing Process [1]

BIOSENSORS AND BIOSENSING PROCESS

- Types of bioreceptors:
 - Antigen/Antibody (Ag-Ab)
 - Enzymatic
 - DNA/Nucleic acid
 - Cellular
 - Biomimetic materials [1]
- Types of biotransducers:
 - Optical
 - Electrochemical
 - Mass-sensitive [1]

BIORECEPTORS: ANTIGEN/ANTIBODY (AG-AB)

- Antigen (Ag)
- Antibody (Ab)
- Binding (Ag-Ab)
- Process:
 - (i) Ab binds Analyte
 - (ii) Physicochemical change
 - (iii) Indicate presence of substance [2]

Figure 2: Ag-Ab Interaction [2]

BIORECEPTORS: ANTIGEN/ANTIBODY (AG-AB)

- Example: Detection of foodborne bacterial pathogens
 - Antibody: anti-Campylobacter
 - Antigen: Campylobacter
 - Reaction: transport of ions
 - Measurement: amperometric [2]
- Advantages:
 - Robust
 - Sensitive
 - Rapid [2]
- Disadvantage:
 - Reaction reduced by stress conditions [2]

BIORECEPTORS: ENZYMATIC

- Enzymes
 - catalytic reaction
- Process:
 - (i) Compose/decompose analyte(ii) Physicochemical change(iii) Indicate presence of substance [1]

BIORECEPTORS: ENZYMATIC

- Example: Determination of uric acid
 - Enzyme: Uricase, Uox
 - Analyte: Urine
 - Reaction: allantoin + CO₂ + H₂O₂, H₂O₂ --> O₂ + 2H₊ + 2e₋
 - Measurement: amperometric [3]
- Advantages:
 - Usable in large concentration range
 - Very low detection limit
 - Acceptable response time [3]
- Disadvantage:
 - Reaction affected by pH and temperature [3]

BIOTRANSDUCERS: OPTICAL

- Measure radiation intensity
 - Surface Plasmon Resonance (SPR)
 - Fluorescence
 - Raman, etc. [1]

- Process:
 - (i) Change in radiation intensity
 - (ii) Increment/decrement of electricity
 - (iii) Convert to measurable information [1]

Biosensing in Health Applications

BIOTRANSDUCERS: OPTICAL

- Example: Detection of foodborne bacterial pathogens
 - Reaction: pathogen binding, change in mass
 - Measurement: changes in refractive index [2]
- Advantages:
 - Real-time monitoring
 - Good precision in small changes [1]
- Disadvantage:
 - Extra effort on data interpretation [1]

BIOTRANSDUCERS: ELECTROCHEMICAL

- Measure electrochemical changes
 - Amperometric
 - Potentiometric
 - Conductometry
 - Impedance [4]

- Process:
 - (i) Change in current
 - (ii) Convert to measurable information [1]

BIOTRANSDUCERS: ELECTROCHEMICAL

- Example: Determination of uric acid
 - Reaction: H2O2 --> O2 + 2H+ + 2e-
 - Measurement: changes in current [3]
- Advantages:
 - Results are highly reproducible
 - Satisfactory storage stabilization [3]
- Disadvantage:
 - Limited shelf life [6]

CASE STUDY: CONTINUOUS GLUCOSE MONITORING (CGM) SENSOR

- Product: Enlite Glucose Sensor
- Manufacturer: Medtronic MiniMed Inc.
- Contact point: Interstitial fluid
- Components: sensor, transmitter, receiver [7]

CASE STUDY: CONTINUOUS GLUCOSE MONITORING (CGM) SENSOR

- Bioreceptor: enzymatic
- Biotransducer: electrochemical
- Sensing process:
 - Glucose
 - Semi-permeable membrane
 - Enzyme
 - Peroxide
 - Electrode
 - Transmitter
 - Receiver [7]
- Reaction: Glucose + GOx --> H2O2 --> O2 + 2H+ + 2e- [8]

Figure 8: CGM Sensor Components [7]

CASE STUDY: CONTINUOUS GLUCOSE MONITORING (CGM) SENSOR

- Advantages:
 - Provides large number of glucose measurements
 - Alert for lows or highs [10]
- Disadvantages:
 - Discomfort to patients
 - Frequent replacement of sensor
 - High cost [10]

DISCUSSION

- Ethical challenges of ubiquitous healthcare:
 - Privacy
 - Agency
 - Equity
 - Responsible for errors [12]
- Application domains of biosensors:
 - Home and community
 - Hospitals and primary healthcare facilities
 - Over-the-counter diagnostic sensors [13]

CONCLUSION AND FUTURE WORK

- Biosensors in reality not a silver bullet
- Reactive healthcare model --> proactive wellness-preservation
- Pervasiveness
- Technology
- Personal health
- Crowdsourcing [13]

BIBLIOGRAPHY

[1] T. Vo-Dinh and L. Allain, Biomedical Photonics Handbook. Boca Raton, Fla.: CRC Press, 2003, p. Chapter 20: Biosensors for Medical Applications.

[2] B. Byrne, E. Stack, N. Gilmartin and R. O'Kennedy, "Antibody-Based Sensors: Principles, Problems and Potential for Detection of Pathogens and Associated Toxins", Sensors, vol. 9, no. 6, pp. 4407-4445, 2009.

[3] F. Arslan, "An Amperometric Biosensor for Uric Acid Determination Prepared From Uricase Immobilized in Polyaniline-Polypyrrole Film", Sensors, vol. 8, no. 9, pp. 5492-5500, 2008.

[4] D. Grieshaber, R. MacKenzie, J. Vörös and E. Reimhult, "Electrochemical Biosensors - Sensor Principles and Architectures", Sensors, vol. 8, no. 3, pp. 1400-1458, 2008.

[5] S. Ivanova, Y. Ivanov and T. Godjevargova, "Urea Amperometric Biosensors Based on Nanostructured Polypyrrole and Poly Ortho-Phenylenediamine", Open Journal of Applied Biosensor, vol. 02, no. 01, pp. 12-19, 2013.

[6] Safetyandhealthmagazine.com, "The pros and cons of electrochemical sensors", 2011. [Online]. Available: http://www.safetyandhealthmagazine.com/articles/the-pros-and-cons-of-

electrochemical-sensors-2. [Accessed: 11- Jan- 2016].

[7] Medtronicdiabetes.com, "Enlite[™] Sensor | Glucose Sensor for Comfort | Medtronic Diabetes", 2016. [Online]. Available: https://www.medtronicdiabetes.com/products/enlite-sensor. [Accessed: 17- Jan- 2016].

[8] E. Yoo and S. Lee, "Glucose Biosensors: An Overview of Use in Clinical Practice", Sensors, vol. 10, no. 5, pp. 4558-4576, 2010.

BIBLIOGRAPHY

[9] J. Kannampilly, "Chapter 43 - Continuous Glucose Monitoring System", Medicine Update 2013, pp. 198 - 200, 2013.

[10] S. Vashist, "Continuous Glucose Monitoring Systems: A Review", Diagnostics, vol. 3, no. 4, pp. 385-412, 2013.

[11] Medtronicdiabetes.com, "Enlite[™] Sensor | Glucose Sensor for Comfort | Medtronic Diabetes", 2016. [Online]. Available: http://www.medtronicdiabetes.com/products/enlite-sensor. [Accessed: 17- Jan- 2016].

[12] I. Brown and A. Adams, "The Ethical Challenges of Ubiquitous Healthcare", International Review of Information Ethics, vol. 8, pp. 53 - 60, 2007.

[13] M. McGrath and C. Ni Scanaill, Sensor Technologies: Healthcare, Wellness and Environmental Applications. New York: Apress Media, LLC, 2014, pp. 1 - 290.