Subsumption Architecture in Swarm Robotics

Cuong Nguyen Viet 16/11/2015

Table of content

Motivation

Subsumption Architecture

- Background
- Architecture decomposition
- Implementation

Swarm robotics

- Swarm intelligence
- Subsumption architecture in swarm robotics

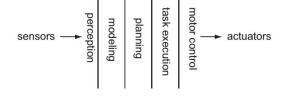
Conclusion

Motivation

Swarm robotics, motivated by collective behaviours of biology swarm, has desirable properties

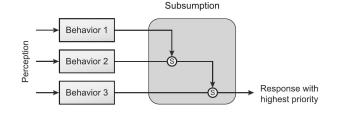
Effective approach for robot control architecture which emphasize emergence of behaviour from individual interactions

Subsumption Architecture Background


Developed by Rodney Brooks at MIT in mid 80s

Brooks argued that **Sense-Plan-Act** paradigm in traditional approach is not practical

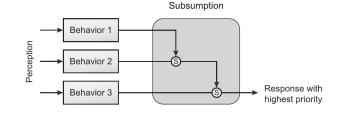
Brooks suggested layered control system in horizontal decomposition

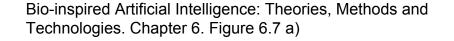

Bio-inspired Artificial Intelligence: Theories, Methods and Technologies. Chapter 6. Figure 6.4. Figure 6.5.

Subsumption Architecture Decomposition

Traditional approach:

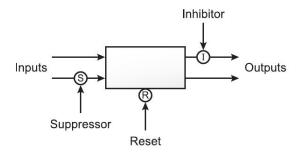
- Sense-Plan-Act (SPA) approach Subsumption architecture:
- Inherent parallel system




Bio-inspired Artificial Intelligence: Theories, Methods and Technologies. Chapter 6. Figure 6.7 a)

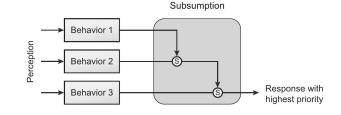
Subsumption Architecture Decomposition (cont.)

Layers of behaviour:


- Each layer is a pre-wired behaviour
- Higher level build upon lower level for complex behaviours
- The layers operate asynchronously

Subsumption Architecture Behaviour module

Higher behavioural module subsume the competence of lower behavioural module

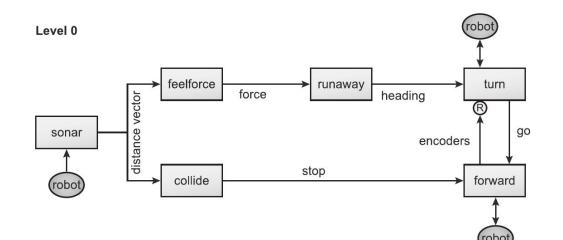


Bio-inspired Artificial Intelligence: Theories, Methods and Technologies. Chapter 6. Figure 6.6

Subsumption Architecture Features

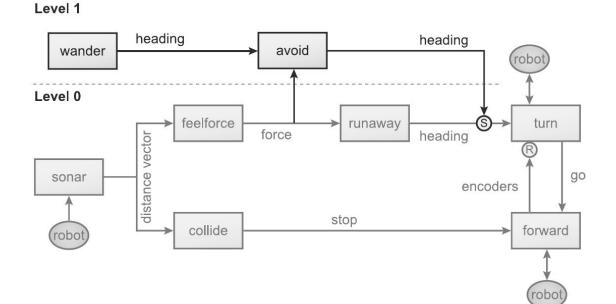
Key features:

- No knowledge representation or world model is used.
- The behaviours are organized in bottom up fashion
- Complex behaviour are fashioned from combination of simpler ones

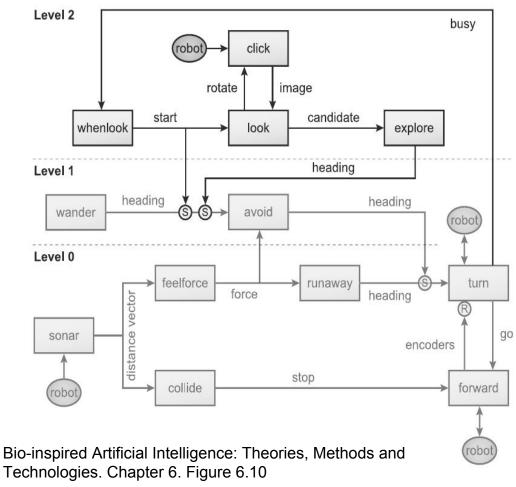


Subsumption Architecture Implementation

Navigation of a mobile robot


- An example from Brook (1986)
- Robot is a wheeled platform with circular array of sonar sensor

Subsumption Architecture Implementation (cont.)


Bio-inspired Artificial Intelligence: Theories, Methods and Technologies. Chapter 6. Figure 6.8.

Subsumption Architecture Implementation (cont.)

Bio-inspired Artificial Intelligence: Theories, Methods and Technologies. Chapter 6. Figure 6.9.

Subsumption Architecture Implementation (cont.)

Subsumption Architecture Evaluation

Strength

- Reactivity
- Parallelism
- Incremental design

Weakness

- Inflexibility at runtime
- No explicit representation of knowledge

Swarm Robotics Swarm intelligence

Studies of large collection of simple agents which can collectively solve problems that are too complex for a single agent

Example:

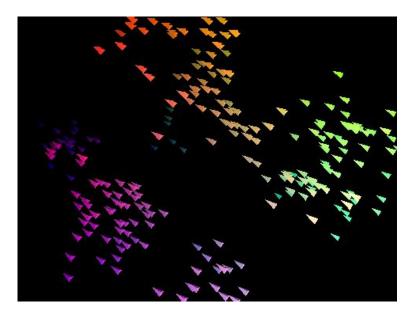
- Particle Swarm Optimization
- Ant colony optimization

http://cir.institute/wpcontent/uploads/2014/09/birds_vortex_800x450.jpg

Swarm Robotics Definition

Simple interaction among robots in order to solve complex problem

Group of 10 to 100 units



http://singularityhub.com/wp-content/uploads/2009/06/swarm-robots.jpg

Swarm Robotics Advantages

Potential advantages

- Robustness
- Flexibility
- Scalability

Swarm Robotics Classes

http://wyss.harvard.edu/staticfiles/ourwork/br/kilobots-350x233.jpg http://img.scoop. it/c1ZCYbe5UvCb3Y2pbfgHFjI72eJkfbmt4t8yenImKBXEejxNn4ZJNZ

Swarm Robotics Control architecture

The process of perceiving environment, reasoning and acting is defined by the robot's control architecture

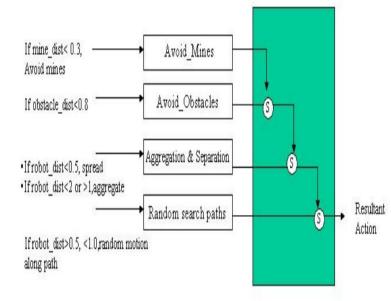
Behaviour-based control is often used

- Methodology for adding and fine-tuning control
- Distributed and asynchronous robots without central control

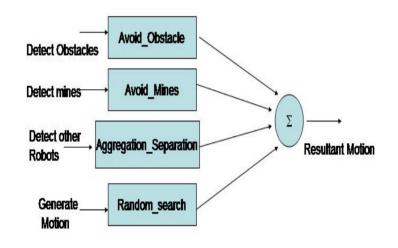
Swarm Robotics Case study 1

Autonomous robots perform underwater mine countermeasures (UMCM)

Two behaviour-based architectures were used for testing and implementation: subsumption and motor schema

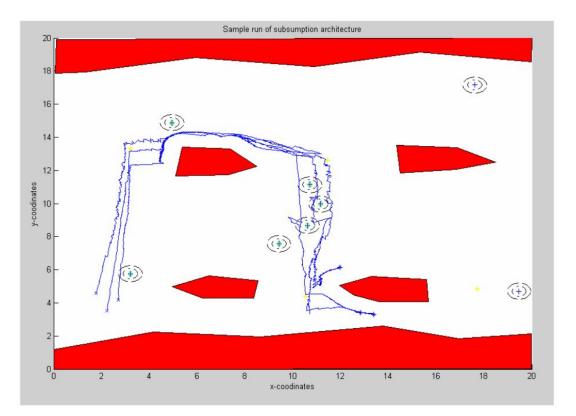

Behavior n Behavior n-1 Behavior 2 Behavior 2 Behavior 1 $R = \Sigma (G_i R_i)$

Coordinator

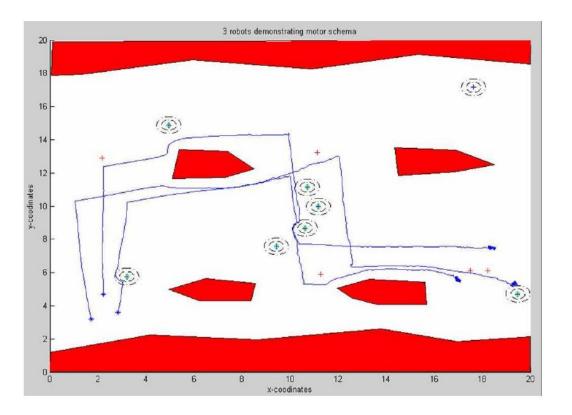

Behaviour

- Avoiding mines
- Avoiding obstacles
- Aggregation_Seperation

http://eia.udg.es/~busquets/thesis/thesis_html/img12.png



[2]. Figure 20. Subsumption architecture of a mine hunting robot



Motor Schema diagram demonstrating sum of group behaviors

[2]. Figure 3. Motor schema architecture for mine hunting

[2] Figure 21. 3 robots performing UMCM under subsumption architecture

[2] Figure 18. Robot swarm performing UMCM with motor schema

Subsumption Architecture

- Decision structure to pick correct behaviour
- + Reactive to the environment
- Inconsistent formation
- Unpredictability may suffer from chaotic instability

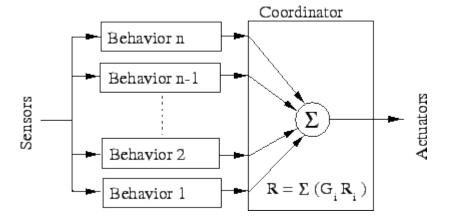
Motor schema

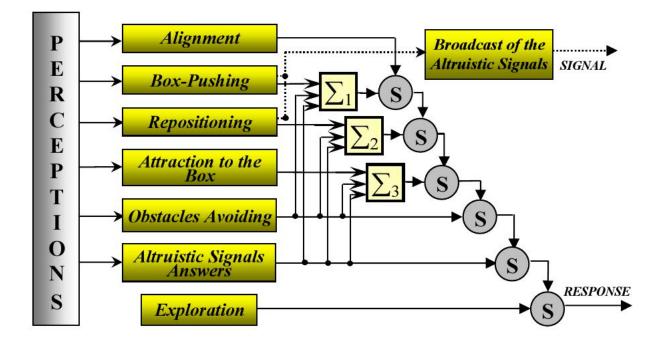
- Individual behaviour modular in nature
- Effective in controlling motion of individual robots
- Lack of decision structure

The motor schema approach is effective for controlling the motion of individual robots with a swarm

The subsumption approach shows poor aptitude for swarm control. It lacks coordination except for collision avoidance

Swarm Robotics Case study 2

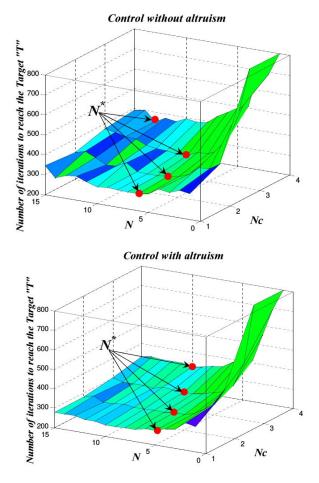

Exploration and foraging task is noncooperative - could be performed by one robot


Box pushing task

 Robots cooperate in order to push a box to set location

Hybrid control architecture

- Subsumption Architecture
- Motor schema Architecture



[4] Figure 2. Control based hybrid architecture

The use of low-level communication give more coordination and robustness of interaction

The hybrid control architecture is very efficient in cooperative task

[4] Figure 8. Evolution of the number of iteration according to N and Nc

Conclusion

Subsumption Architecture yields great result - emergence of complex behaviours from simple ones.

Pure subsumption is inadequate in solving certain tasks.

Proposed hybrid architecture: cross subsumption, neural networks learning, global knowledge and planning

Reference

[1] Floreano, D., & Mattiussi, C. (2008). *Bio-inspired artificial intelligence: Theories, methods, and technologies*. Cambridge, Mass: MIT Press.

[2] Tan, Y.C. Synthesis of a controller for swarming robots performing underwater mine countermeasures. *U.S.N.A. Trident Scholar project report*; no.328, 2004.

URI: http://archive.rubicon-foundation.org/3590

[3] Rodney A. Brooks. (1985). A Robust Layered Control System for a Mobile Robot. *Technical Report. Massachusetts Institute of Technology, Cambridge, MA, USA.*

[4] Adouane, L., Le Fort-Piat, N., "Hybrid behavioral control architecture for the cooperation of minimalist mobile robots," in *Robotics and Automation*, 2004. Proceedings. ICRA '04. 2004 IEEE International Conference on, vol.4, no., pp.3735-3740 Vol.4, April 26-May 1, 2004