Introduction	Genetic Algorithms	Quadruped Robot	Hexaped Robot	Biped Robot	Evaluation

Robot Walking with Genetic Algorithms

Bente Reichardt

14. December 2015

Bente Reichardt

Introduction	Genetic Algorithms	Quadruped Robot	Hexaped Robot	Biped Robot	Evaluation
Outline					

- Introduction
- Genetic algorithms
- Quadruped Robot
- Hexapod Robot
- Biped Robot
- Evaluation

Introduction	Genetic Algorithms	Quadruped Robot	Hexaped Robot	Biped Robot	Evaluation
Why wa	lking?				

- Mobile robots
- Similar to humans and animals
- Can move forward on different surfaces
- Can climb

Introduction	Genetic Algorithms	Quadruped Robot	Hexaped Robot	Biped Robot	Evaluation
Why wa	lking?				

- Mobile robots
- Similar to humans and animals
- Can move forward on different surfaces
- Can climb

Problem: Walking is complex

Hexaped Robot

Robot Biped Robot

Evaluation

Evolutionary Algorithms

- Biological inspired
- Survival of the fittest
- Reproduction and Mutation

http://www.deviantart.com/art/Fish-

Fishapod-Tetrapod-Tree-186821546

Introduction	Genetic Algorithms	Quadruped Robot	Hexaped Robot	Biped Robot	Evaluation
Genetic	Algorithm				

• Population based

Introduction	Genetic Algorithms	Quadruped Robot	Hexaped Robot	Biped Robot	Evaluation
Genetic	Algorithm				

- Population based
- Solution as chromosomes

Introduction	Genetic Algorithms	Quadruped Robot	Hexaped Robot	Biped Robot	Evaluation
Genetic	Algorithm				

- Population based
- Solution as chromosomes
- Fitness function

Introduction	Genetic Algorithms	Quadruped Robot	Hexaped Robot	Biped Robot	Evaluation
Genetic	Algorithm				

- Population based
- Solution as chromosomes
- Fitness function
- Generating a new generation

Hexaped Robot

bot Biped Robot

Evaluation

Hexaped Robot

oot Biped Robot

Evaluation

Hexaped Robot

Robot Biped Robot

Evaluation

Hexaped Robot

Robot Biped Robot

Evaluation

Introduction	Genetic Algorithms	Quadruped Robot	Hexaped Robot	Biped Robot	Evaluation
Quadru	ped Robot				

http://www.roboticstoday.com/robots/aibo-ers-7

4 legs 2 DOF per leg

Introduction	Genetic Algorithms	Quadruped Robot	Hexaped Robot	Biped Robot	Evaluation
Setup					

• Code for the walking exists

Introduction	Genetic Algorithms	Quadruped Robot	Hexaped Robot	Biped Robot	Evaluation
Setup					

- Code for the walking exists
- 235 mm/s with human testing

Introduction	Genetic Algorithms	Quadruped Robot	Hexaped Robot	Biped Robot	Evaluation
Setup					

- Code for the walking exists
- 235 mm/s with human testing
- 4 Robots to test parallel and autonomous

Introduction	Genetic Algorithms	Quadruped Robot	Hexaped Robot	Biped Robot	Evaluation
Setup					

- Code for the walking exists
- 235 mm/s with human testing
- 4 Robots to test parallel and autonomous
- Some hours to learn

Introduction	Genetic Algorithms	Quadruped Robot	Hexaped Robot	Biped Robot	Evaluation
Genetic	Algorithm				

- Population: 30
- Chromosomes: Parameters of the walking algorithm
- Fitness function: Distance moved forward

Introduction	Genetic Algorithms	Quadruped Robot	Hexaped Robot	Biped Robot	Evaluation
Result					

• Distance measurement sometimes failed

Introduction	Genetic Algorithms	Quadruped Robot	Hexaped Robot	Biped Robot	Evaluation
Result					

- Distance measurement sometimes failed
- Time was enough

Introduction	Genetic Algorithms	Quadruped Robot	Hexaped Robot	Biped Robot	Evaluation
Result					

- Distance measurement sometimes failed
- Time was enough
- 290 mm/s with GA optimization

Introduction	Genetic Algorithms	Quadruped Robot	Hexaped Robot	Biped Robot	Evaluation
Result					

- Distance measurement sometimes failed
- Time was enough
- 290 mm/s with GA optimization
- The robot got faster

Introduction	Genetic Algorithms	Quadruped Robot	Hexaped Robot	Biped Robot	Evaluation
Hexapod	l Robot				

6 legs 2 DOF per leg

http://robot-kingdom.com/hexapod-robot-tutorialswhere-everything-begins/

Introduction	Genetic Algorithms	Quadruped Robot	Hexaped Robot	Biped Robot	Evaluation
Setup					

• Evolution of a neural network for walking control

Introduction	Genetic Algorithms	Quadruped Robot	Hexaped Robot	Biped Robot	Evaluation
Setup					

- Evolution of a neural network for walking control
- Separated in two steps

Introduction	Genetic Algorithms	Quadruped Robot	Hexaped Robot	Biped Robot	Evaluation
Setup					

- Evolution of a neural network for walking control
- Separated in two steps
- Step one: move a leg

Introduction	Genetic Algorithms	Quadruped Robot	Hexaped Robot	Biped Robot	Evaluation
Setup					

- Evolution of a neural network for walking control
- Separated in two steps
- Step one: move a leg
- Step two: walking with 6 legs

Introduction Genetic Algorithms Quadruped Robot Hexaped Robot Biped Robot Evaluation
Genetic Algorithm 1

• Chromosomes: Neural Network for one leg

Introduction	Genetic Algorithms	Quadruped Robot	Hexaped Robot	Biped Robot	Evaluation
Genetic	Algorithm 1				

- Chromosomes: Neural Network for one leg
- Fitness function: Range of the oscillation

Introduction	Genetic Algorithms	Quadruped Robot	Hexaped Robot	Biped Robot	Evaluation
Genetic	Algorithm 1				

- Chromosomes: Neural Network for one leg
- Fitness function: Range of the oscillation
- Stops when oscillation reaches the full length

Introduction	Genetic Algorithms	Quadruped Robot	Hexaped Robot	Biped Robot	Evaluation
Genetic	Algorithm 2				

• Population: 10; 2 stay

Introduction	Genetic Algorithms	Quadruped Robot	Hexaped Robot	Biped Robot	Evaluation
Genetic	Algorithm 2				

- Population: 10; 2 stay
- Chromosomes: Neural network for all legs

Introduction	Genetic Algorithms	Quadruped Robot	Hexaped Robot	Biped Robot	Evaluation
Genetic	Algorithm 2				

- Population: 10; 2 stay
- Chromosomes: Neural network for all legs
- Fitness function: distance from starting point in the body axis

Introduction	Genetic Algorithms	Quadruped Robot	Hexaped Robot	Biped Robot	Evaluation
Genetic	Algorithm 2				

- Population: 10; 2 stay
- Chromosomes: Neural network for all legs
- Fitness function: distance from starting point in the body axis
- Crossover rate 0.1

- Population: 10; 2 stay
- Chromosomes: Neural network for all legs
- Fitness function: distance from starting point in the body axis
- Crossover rate 0.1
- Mutation rate: 0.04

Introduction	Genetic Algorithms	Quadruped Robot	Hexaped Robot	Biped Robot	Evaluation
Result					

• Learned to move their legs

Introduction	Genetic Algorithms	Quadruped Robot	Hexaped Robot	Biped Robot	Evaluation
Result					

- Learned to move their legs
- Robots walked backwards

Introduction	Genetic Algorithms	Quadruped Robot	Hexaped Robot	Biped Robot	Evaluation
Result					

- Learned to move their legs
- Robots walked backwards
- Similar to living insects

Introduction	Genetic Algorithms	Quadruped Robot	Hexaped Robot	Biped Robot	Evaluation
Result					

- Learned to move their legs
- Robots walked backwards
- Similar to living insects
- Wave-gait vs tripod gait

Introduction	

Genetic Algorithms

Quadruped Robot

Hexaped Robot

Biped Robot

Evaluation

Biped Robot

2 legs 6 DOF per leg

 $\label{eq:http://www.engadget.com/2006/11/28/kondo-adds-pivot-to-khr-1hv-biped-robot-kit/$

Introduction	Genetic Algorithms	Quadruped Robot	Hexaped Robot	Biped Robot	Evaluation
Experim	ent				

• Truncated Fourier Series and polynomial equations used for motor control

Joint name	Support Leg (Left Leg)	Swing leg (Right leg)
Left Hip Yaw	Sinusoid	Sinusoid
Left Hip Roll	Sinusoid	Sinusoid
Left Hip Pitch	Polynomial	Sinusoid
Left Knee Pitch	Polynomial	Sinusoid
Left Ankle Pitch	Polynomial	Sinusoid
Left Ankle Roll	Sinusoid	Sinusoid

Introduction	Genetic Algorithms	Quadruped Robot	Hexaped Robot	Biped Robot	Evaluation
Experim	ient				

- Truncated Fourier Series and polynomial equations used for motor control
- Sinusoid equation the swing leg

Joint name	Support Leg (Left Leg)	Swing leg (Right leg)
Left Hip Yaw	Sinusoid	Sinusoid
Left Hip Roll	Sinusoid	Sinusoid
Left Hip Pitch	Polynomial	Sinusoid
Left Knee Pitch	Polynomial	Sinusoid
Left Ankle Pitch	Polynomial	Sinusoid
Left Ankle Roll	Sinusoid	Sinusoid

Introduction	Genetic Algorithms	Quadruped Robot	Hexaped Robot	Biped Robot	Evaluation
Experim	ient				

- Truncated Fourier Series and polynomial equations used for motor control
- Sinusoid equation the swing leg
- partly polynomial equations for the support leg

Joint name	Support Leg (Left Leg)	Swing leg (Right leg)
Left Hip Yaw	Sinusoid	Sinusoid
Left Hip Roll	Sinusoid	Sinusoid
Left Hip Pitch	Polynomial	Sinusoid
Left Knee Pitch	Polynomial	Sinusoid
Left Ankle Pitch	Polynomial	Sinusoid
Left Ankle Roll	Sinusoid	Sinusoid

Introduction	Genetic Algorithms	Quadruped Robot	Hexaped Robot	Biped Robot	Evaluation
Experim	nent				

- Truncated Fourier Series and polynomial equations used for motor control
- Sinusoid equation the swing leg
- partly polynomial equations for the support leg
- Learning of the equations for every motor

Joint name	Support Leg (Left Leg)	Swing leg (Right leg)
Left Hip Yaw	Sinusoid	Sinusoid
Left Hip Roll	Sinusoid	Sinusoid
Left Hip Pitch	Polynomial	Sinusoid
Left Knee Pitch	Polynomial	Sinusoid
Left Ankle Pitch	Polynomial	Sinusoid
Left Ankle Roll	Sinusoid	Sinusoid

Introduction	Genetic Algorithms	Quadruped Robot	Hexaped Robot	Biped Robot	Evaluation
Genetic	Algorithm				

- Population: 20
- Chromosomes: Coefficients of the equations
- Fitness function: Walking without falling

Model of implementation	Selection	Crossover	Mutation
GA-1	Random	Random	10%
GA-2	Roulette wheel	Random	10%
GA-3	Roulette wheel	All pitches and all rolls	10%

Introduction	Genetic Algorithms	Quadruped Robot	Hexaped Robot	Biped Robot	Evaluation
Result					

- Coefficients are learned
- Each motor has specific equation
- robots learned to walk

Algori thm	#chrom osome	#Generation	Best Fitness (average 5 iteration)	Iterations to Converge
GA-1	20	20	0.51376	-
GA-2	20	20	0.58862	20
GA-3	20	20	0.50434	

Introduction	Genetic Algorithms	Quadruped Robot	Hexaped Robot	Biped Robot	Evaluation
Evaluati	on				

• Optimization algorithm

Introduction	Genetic Algorithms	Quadruped Robot	Hexaped Robot	Biped Robot	Evaluation
Evaluat	ion				

- Optimization algorithm
- Finds a good solution

Introduction	Genetic Algorithms	Quadruped Robot	Hexaped Robot	Biped Robot	Evaluation
Evaluat	ion				

- Optimization algorithm
- Finds a good solution
- PSO (particle swarm optimization) usually faster

Introduction	Genetic Algorithms	Quadruped Robot	Hexaped Robot	Biped Robot	Evaluation

Thank you for your attention!

Introduction	Genetic Algorithms	Quadruped Robot	Hexaped Robot	Biped Robot	Evaluation
Referen	ces				

- Chernova, Sonia, and Manuela Veloso. "An evolutionary approach to gait learning for four-legged robots." Intelligent Robots and Systems, 2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference on. Vol. 3. IEEE, 2004.
- Lewis, M. Anthony, Andrew H. Fagg, and Alan Solidum. "Genetic programming approach to the construction of a neural network for control of a walking robot." Robotics and Automation, 1992.
 Proceedings., 1992 IEEE International Conference on. IEEE, 1992.
- Azarkaman, Mostafa, Mohammad Aghaabbasloo, and Mostafa E. Salehi. "Evaluating GA and PSO evolutionary algorithms for humanoid walk pattern planning." Electrical Engineering (ICEE), 2014 22nd Iranian Conference on. IEEE, 2014.