

Introduction to Robotics Assignment #1 Due: 22.04.2015, 13.00

Task 1.1 (8 points) Pyramid: A pyramid (square base AB = BC = CD = DA = 10cm; plumbline ME = 30cm, with vertex *E* located at the top and point *M* located at the center of the base) is held by a robot so that its square base ABCD is located in the *xy*-plane of a cartesian world coordinate frame M_{xyz} , with point *M* at its origin, the edges *AB* and *CD* parallel to the *x*-axis and the edged *BC* and *AD* parallel to the *y*-axis. Attached to the pyramid is an object coordinate frame M_{uvw} , which initially coincides with M_{xyz} .

1.1.1 (4 points): Determine the locations of the vertices A through E, after the following sequence of rotations has been performed by the robot: 1. Rotation by $+45^{\circ}$ around M_w ; 2. Rotation by $+30^{\circ}$ around M_u ; 3. Rotation by -30° around M_v .

1.1.2 (4 points): Same sequence of rotations, but using the rotation axes M_z , M_x and M_y instead.

Task 1.2 (6 points) Homogeneous transformations: Given are three frames A, B and C as well as the following two homogeneous transformations:

$${}^{A}T_{B} = \begin{bmatrix} \sqrt{3}/2 & -1/2 & 0 & 2\\ 1/2 & \sqrt{3}/2 & 0 & 1\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

and

$${}^{B}T_{C} = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 & 1\\ -1/\sqrt{2} & 1/\sqrt{2} & 0 & 1\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

1.2.1 (3 points): Can the interpretation of the transformation ${}^{A}T_{C}$ be assumed to be unambiguous?

1.2.2 (3 points): Visualize the three coordinate systems with a tool of your choice

Task 1.3 (6 points) Euler angles:

1.3.1 (3 points): Give three examples of Euler angles (ϕ , θ , ψ) and interpret their geometric meaning.

1.3.2 (3 points): There are 12 possible sequences of rotations with Euler-angles around the axes (see slide 25). Explain why there are exactly 12! (hint: this can be answered in one sentence and one simple calculation).