
University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning (3)

Reinforcement Learning (3)
Machine Learning 64-360

Norman Hendrich

University of Hamburg
MIN Faculty, Dept. of Informatics

Vogt-Kölln-Str. 30, D-22527 Hamburg
hendrich@informatik.uni-hamburg.de

SS 2015

N. Hendrich 1

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning (3)

Contents

TD(λ) and Eligibility Traces

Reinforcement Learning in Continuous Spaces

Learning in Policy Space

Inverse RL and Apprenticeship Learning

Inverse Reinforcement Learning

Recap

N. Hendrich 2

University of Hamburg

MIN Faculty

Department of Informatics

TD(λ) and Eligibility Traces Reinforcement Learning (3)

TD(λ) and Eligibility Traces

I Q-learning and SARSA look one step into the future

I updating Q(s, a) online

I while Monte-Carlo waits until episode ends

⇒ the TD(λ) algorithms combine both ideas

I a family of methods to improve learning (e.g. speed)

I better handle delayed rewards (far in the future)

I update multiple Q values, not just current Q(s, a)

I allows MC techniques to be used on non-episodic tasks

Watkins 1989, Jaakkola, Jordan and Singh 1994, Sutton 1998, Singh and Sutton 1996

N. Hendrich 3

University of Hamburg

MIN Faculty

Department of Informatics

TD(λ) and Eligibility Traces Reinforcement Learning (3)

TD(λ) and Eligibility Traces

theoretical viewpoint, or forward view:

I a bridge from TD to Monte Carlo methods

I TD methods augmented with eligibility traces produce a
spectrum of algorithms, with Monte Carlo methods at one end,
and one-step TD methods at the other

I intermediate methods maybe better than either “pure” method

pragmatical viewpoint, the backward view:

I gain intuition about the algorithms

I the trace marks the memory parameters associated with the
event as (eligible) candidates for learning changes

I TD steps update multiple (visited) states or actions

N. Hendrich 4

University of Hamburg

MIN Faculty

Department of Informatics

TD(λ) and Eligibility Traces Reinforcement Learning (3)

n-step TD prediction

consider estimating V π(s) from sample episodes generated
following policy π

I MC methods perform a backup based on the entire episode
I simple TD methods just consider the next reward, plus the

discounted value of the state one step later, which encodes the
estimates of the remaining rewards

⇒ why not use n-step methods that perform a backup based on
an intermediate number of rewards: more than one, but less
than all?

I those methods are still TD methods, because they update an
earlier estimate based on how it differs from a later estimate;
in this case up to n steps later.

N. Hendrich 5

University of Hamburg

MIN Faculty

Department of Informatics

TD(λ) and Eligibility Traces Reinforcement Learning (3)

Spectrum of n-step TD methods

spectrum of n-step methods, ranging from simple one-step TD methods to the full-episode backups of Monte Carlo

methods
N. Hendrich 6

University of Hamburg

MIN Faculty

Department of Informatics

TD(λ) and Eligibility Traces Reinforcement Learning (3)

The n-step return

Rt = rt+1 + γrt+2 + γ2rt+3 + · · ·+ γT−t−1rT MonteCarlo

R
(1)
t = rt+1 + γVt(st+1) 1− step

R
(2)
t = rt+1 + γrt+2 + γ2Vt(st+2) 2− step

. . .

R
(n)
t = rt+1 + γrt+2 + γ2rt+3 + · · ·+ γn−1rt+n + γnVt(st+n)

also called the corrected n-step truncated return: the Return
truncated after n-steps, and then approximately corrected by
adding the estimated value of the n-th next state.

N. Hendrich 7

University of Hamburg

MIN Faculty

Department of Informatics

TD(λ) and Eligibility Traces Reinforcement Learning (3)

The n-step backup

I one backup operation towards the n-step return

I in the tabular case:

∆Vt(st) = α
[
R
(n)
t − Vt(st)

]
,

with α a positive step-size parameter

I all other states s 6= st are not updated

I on-line update: during an episode, Vt+1(s) = Vt(s) + ∆Vt(s)

I off-line update: increments are accumulated in a separate array,
but not used to change the value estimates until the end of this
episode.

N. Hendrich 8

University of Hamburg

MIN Faculty

Department of Informatics

TD(λ) and Eligibility Traces Reinforcement Learning (3)

Example: n-step TD on Random Walk

I random-walk starting at state (C)

I one step to the left or right at each step, equal probabilities

I reward 0 on every step, 1 for reaching the right goal state

I episode terminates on either the left or right goal state

I in this case, V (s) is just the probability of terminating on the
right when starting in S : {0, 16 ,

2
6 ,

3
6 ,

4
6 ,

5
6 , 1}

N. Hendrich 9

University of Hamburg

MIN Faculty

Department of Informatics

TD(λ) and Eligibility Traces Reinforcement Learning (3)

Example: TD(0) on Random Walk

Value function learned by TD(0) after 0,1,10,100 episodes for a 5-state random walk.

N. Hendrich 10

University of Hamburg

MIN Faculty

Department of Informatics

TD(λ) and Eligibility Traces Reinforcement Learning (3)

Example: n-step TD on Random Walk

I n-step TD methods on the 19-state random walk

I performance measured as RMS error:
∑

s [Vt(s)− V (s)]2

I as a function of step-size α for different values of n

I online (during episode) and off-line updates

N. Hendrich 11

University of Hamburg

MIN Faculty

Department of Informatics

TD(λ) and Eligibility Traces Reinforcement Learning (3)

The Forward view of TD(λ)

I we can also combine different
n-step methods

I e.g., backup using half a two-step return
and half a four-step return,

Rave
t = 1

2R
(2)
t + 1

2R
(4)
t .

I well-defined, if weights sum to 1

I a completely new class of algorithms

I combining properties of the different
individual methods

N. Hendrich 12

University of Hamburg

MIN Faculty

Department of Informatics

TD(λ) and Eligibility Traces Reinforcement Learning (3)

Backup diagram for TD(λ)

I one particular way

to average n-step backups

weighted proportional to λn−1

I λ-return:
Rλt = (1− λ)

∑∞
n=1 λ

n−1R
(n)
t

N. Hendrich 13

University of Hamburg

MIN Faculty

Department of Informatics

TD(λ) and Eligibility Traces Reinforcement Learning (3)

Weighting of each n-step return

Rλt = (1− λ)
∑T−t−1

n=1 λn−1R
(n)
t + λT−t−1Rt

λ = 1: main sum is zero, remaining term is Rt : Monte Carlo

λ = 0: reduces to R
(1)
t , so TD(0)

N. Hendrich 14

University of Hamburg

MIN Faculty

Department of Informatics

TD(λ) and Eligibility Traces Reinforcement Learning (3)

Example: TD(λ) on the Random Walk

I performance of TD(λ) on the 19-state random walk

I step-size α, different values of λ

I smallest RMS error with intermediate values of λ

N. Hendrich 15

University of Hamburg

MIN Faculty

Department of Informatics

TD(λ) and Eligibility Traces Reinforcement Learning (3)

The Forward view

I from each state s visited, look forward in time to all future
rewards, and decide how best to combine them.

I problem: this is hard to implement, using at each step
knowledge of what will happen many steps later . . .

N. Hendrich 16

University of Hamburg

MIN Faculty

Department of Informatics

TD(λ) and Eligibility Traces Reinforcement Learning (3)

The Backward view of TD(λ)

I reserve an additional memory variable for each state,

the eligibility trace et(s) ∈ IR+

I On each step t, the elibibility traces for all states decay by γλ,
but the trace for the one state visited on the step is
incremented by 1:

et(s) =

{
γλet−1(s) if s 6= st ;,

γλet−1(s) + 1, if s = st ;

N. Hendrich 17

University of Hamburg

MIN Faculty

Department of Informatics

TD(λ) and Eligibility Traces Reinforcement Learning (3)

The Backward view of TD(λ)

I the traces record which states have recently been visited,

I where recently is defined in terms of γλ

I the traces indicate the degree to which each state
is eligible to change during learning

I for example, the TD “error” for state-value prediction is

δt = rt+1 + γVt(st+1)− Vt(st)

I and the TD(λ) update becomes:

∆Vt(s) = αδtet(s), for all s ∈ S

N. Hendrich 18

University of Hamburg

MIN Faculty

Department of Informatics

TD(λ) and Eligibility Traces Reinforcement Learning (3)

On-line tabular TD(λ)

initialize V (s) arbitrarily and e(s) = 0, for all s ∈ S
repeat (for each episode):

initialize s
repeat (for each step of episode):

a← action given by policy π for s
take action a, observe reward r and next state s ′

δ ← r + γV (s ′)− V (s)
e(s)← e(s) + 1
for all s:

V (s)← V (s) + αδe(s)
e(s)← γλe(s)

s ← s ′

until s is terminal

N. Hendrich 19

University of Hamburg

MIN Faculty

Department of Informatics

TD(λ) and Eligibility Traces Reinforcement Learning (3)

The Backward view

I ”shouting” updates back to previously visited states
I λ = 0: all traces are zero, except for those at st ,

Q-learning and SARSA are TD(0) methods
I 0 < λ < 1: more of the preceding states are changed, but each

more temporally distant state is changed less
I λ = 1: credit given to earlier states falls by γ at each step,

giving Monte Carlo for γ = 1
N. Hendrich 20

University of Hamburg

MIN Faculty

Department of Informatics

TD(λ) and Eligibility Traces Reinforcement Learning (3)

Equivalence of forward and backward view

I trying to build an online-algorithm (backward) that achieves
the same weight updates as the off-line λ-return algorithm

I align the forward (theoretical) and backward (implementation)
views of TD(λ)

I want to show that the value-function updates are the same at
the end of an episode, so

T−1∑
t=0

∆V TD
t (s) =

T−1∑
t=0

∆V λ
t (st)Isst , for all s ∈ S ,

I see Sutton and Barto section 7.4 for the math and proof ideas

N. Hendrich 21

University of Hamburg

MIN Faculty

Department of Informatics

TD(λ) and Eligibility Traces Reinforcement Learning (3)

Example: Online TD(λ) on the Random Walk

I performance of online TD(λ) on the 19-state random walk

I step-size α, different values of λ

I note: a bit better performance than the off-line algorithm

N. Hendrich 22

University of Hamburg

MIN Faculty

Department of Informatics

TD(λ) and Eligibility Traces Reinforcement Learning (3)

Sarsa(λ)

How to generalize TD(λ) for control? That is, learning Q(s, a)
instead of learning V (s)?

I Qt+1(s, a) = Qt(s, a) + αδtet(s, a), for all (s, a)

δt = rt+1 + γQt(st+1, at+1)− Qt(st , at)

et(s, a) =

{
γλet−1(s, a) + 1, if s = st and a = at ;

γλet−1(s, a) otherwise

I from time to time, improve policy π using greedification

N. Hendrich 23

University of Hamburg

MIN Faculty

Department of Informatics

TD(λ) and Eligibility Traces Reinforcement Learning (3)

Sarsa(λ) backup diagram

N. Hendrich 24

University of Hamburg

MIN Faculty

Department of Informatics

TD(λ) and Eligibility Traces Reinforcement Learning (3)

Sarsa(λ) algorithm

initialize Q(s, a) arbitrarily and e(s, a) = 0, for all s, a
repeat (for each episode):

initialize s, a
repeat (for each step of episode):
a← action given by policy π for s
take action a, observe reward r and next state s ′

δ ← r + γQ(s ′, a′)− Q(s, a)
e(s, a)← e(s, a) + 1
for all s, a:
Q(s, a)← Q(s, a) + αδe(s, a)
e(s, a)← γλe(s, a)

s ← s ′, a← a′

until s is terminal

N. Hendrich 25

University of Hamburg

MIN Faculty

Department of Informatics

TD(λ) and Eligibility Traces Reinforcement Learning (3)

Speedup of learning using Sarsa(λ)

I example path of the learner, ending in goal state ’*’

I TD(0) methods will only update the single Q(s, a) for the
immediately preceding state

I eligibility-trace-methods update many Q(s, a) values

weighted by relevance

N. Hendrich 26

University of Hamburg

MIN Faculty

Department of Informatics

TD(λ) and Eligibility Traces Reinforcement Learning (3)

Q(λ) algorithm?!

I Q(λ): Watkins’s and Peng’s algorithms
I Q-learning learns greedy policy while following another policy
I n-step update only possible while using greedy policy

I eligibility traces for actor-critic methods
I replacing traces vs. accumulating traces

I clip et(s) ≤ 1, can improve learning speed

I methods that use variable λ

I implementation issues

I can TD(λ) also works in non-Markovian environments?

I see Sutton and Barto, chapter 7 for details

N. Hendrich 27

University of Hamburg

MIN Faculty

Department of Informatics

TD(λ) and Eligibility Traces Reinforcement Learning (3)

Q(λ)

I learning Q(s, a) for greedy policy while following current π

I two different ways to handle non-greedy actions

N. Hendrich 28

University of Hamburg

MIN Faculty

Department of Informatics

TD(λ) and Eligibility Traces Reinforcement Learning (3)

Summary: TD(λ)

A family of improved temporal-difference learning algorithms to
speed-up learning

I interpolate between 1-step TD(0) and
n-step TD(n) Monte-Carlo methods

I update more than one element of V or Q at each time step

I simple implementation using eligibility traces

I parameter λ sets the time-scale of the learning

N. Hendrich 29

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Generalization and function approximation

Application of RL ideas to “real world” problems?!

N. Hendrich 30

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Generalization and function approximation

so far, we considered the so-called tabular case:

I discrete state and action spaces,
S = {s0, s1, . . . , sn}, A = {a0, a1, . . . , am}

I state-space small enough for in-memory representation

I many theoretical results assume that all (s, a) pairs are visited
infinitely often

I corresponding time requirements in addition to memory

for continuous state-spaces we need generalization:

I most states visited never experienced exactly before

I need to generalize from previously experienced similar states

I combine RL algorithms with function approximation
N. Hendrich 31

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

The key issue: Generalization

“How can experience with a limited subset of the state space be
usefully generalized to produce a good approximation over a much
larger subset?”

I most states visited never experienced exactly before

I most actions never performed exactly before

I “complex sensations”: e.g., visual images, high-DOF problems

N. Hendrich 32

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Generalization via function approximation

Basic idea: represent continuous state-space or state-action-space
using feature functions with parameters ~θ ∈ {Θ},
with |Θ| � |S | or |Θ| � |S × A|. Then, use RL-algorithms to
adjust the parameters θ;

All common function approximation methods can be used:

I polynomial and spline interpolation functions (low degrees)

I statistical curve-fitting, decision trees

I artificial neural-networks (multi-layer perceptron)

I kernel-SVMs

I . . .

where the context is often high-DOF problems.
N. Hendrich 33

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Example: Pacman

I let’s say we discover through experience
that this state is bad:

I in naive Q-learning, we know nothing
about this state or its neighbor states

I or even this one:

(idea and images: Abbeel & Peters, RL tutorial, ICRA-2012)

N. Hendrich 34

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Pacman features

Solution: describe the environment state using a vector of features

I features are functions from states to
real numbers (often 0/1) that capture
important properties of the state

I examples:
I distance to closest ghost
I distance to closest dot
I number of ghosts
I 1/(dist to dot)2

I is Pacman in a tunnel? (0/1)
I etc.

I of course, can also describe a Q-state (s, a) with features
I e.g. action (s, a) moves closer to food

N. Hendrich 35

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Pacman features

I using a feature representation, we can write a Q-function or
the value-function V for any state using a few weights:

V (s) = w1f1(s) + w2f2(s) + . . .+ wnfn(s)

Q(s, a) = w1f1(s, a) + w2f2(s, a) + . . .+ wnfn(s, a)

I advantage: experience is summed up in a few powerful numbers

I disadvantage: states may share features but be very different in
value

N. Hendrich 36

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Pacman features

N. Hendrich 37

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Q-function: tabular vs. linear

(Abbeel & Peters, ICRA 2012)

N. Hendrich 38

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Value prediction with function approximation

I try to estimate V π(s) from experience generated using policy π

I but V π(s) no longer repesented as a table,

I instead approximated as V π
t,θ

(
(s)
)

at time step t

I measure approximation error using suitable loss-functions,

e.g. weighted mean-squared error:

MSE (~θ) =
∑

s∈S P(s)
[
V π(s)− V π

t,θ(s)
]2

I where P is a distribution weighting the errors of different states

I usually impossible to reduce the error to zero at all states

I remember: many more states s than parameters θ

N. Hendrich 39

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Interpretation of the least-squares cost function

physical interpretation geometrical interpretation

N. Hendrich 40

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Function approximation: example data

N. Hendrich 41

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Fitting an easy model: polynomial with n = 0

N. Hendrich 42

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

More features: polynomial with n = 1

N. Hendrich 43

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

More features: n = 2

N. Hendrich 44

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

More features: n = 8

N. Hendrich 45

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

More features: n = 15

N. Hendrich 46

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

More features: n = 200

N. Hendrich 47

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

More features: n = 200

N. Hendrich 48

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Training error vs. test error

(remember the magic tool: leave-one-out cross-validation)

N. Hendrich 49

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Selecting the approximating functions

What to do when you don’t know the features?

I useful features are known in many real
applications

I however, we almost certainly don’t know
all features needed

I example: rigid body dynamics
I friction has no good features,

and may be self-referential
I unknown dynamics causes huge problems

(requires more state variables)

I there may also be too many features. . .

N. Hendrich 50

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Can we proceed when we don’t know the features?

Yes!

we need to find machine learning approaches that generate the
features directly based on the data.

1 radial basis functions: create an optimal smooth approximation

2 locally-weighted regression: localize relevant parts of the data
and try to interpolate

3 kernel regression: find useful features by going into function
space using a kernel

N. Hendrich 51

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Better features: radial-basis functions

N. Hendrich 52

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Locally, all data is linear

N. Hendrich 53

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Locally linear solutions

N. Hendrich 54

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Locally linear solutions for a query

N. Hendrich 55

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Exponential kernel

N. Hendrich 56

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Value prediction with function approximation

I try to estimate V π(s) from experience generated using policy π

I but V π(s) no longer repesented as a table,

I instead approximated as V π
t,θ

(
(s)
)

at time step t

I measure approximation error using suitable loss-functions,

e.g. weighted mean-squared error:

MSE (~θ) =
∑

s∈S P(s)
[
V π(s)− V π

t,θ(s)
]2

I where P is a distribution weighting the errors of different states

I usually impossible to reduce the error to zero at all states

I remember: many more states s than parameters θ

N. Hendrich 57

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Gradient-Descent methods

I parameter vector ~θ is a column vector
with a fixed number of real-valued components

I assume that Vθ(s) is a smooth differentiable function of ~θ for
all s ∈ S

I on each time step t we observe a new example st → V π(st)

~θt+1 = ~θt − 1
2α∇~θt

[
V π(st)− Vt(st)

]2
~θt+1 = ~θt + α

[
V π(st)− Vt(st)

]
∇~θtVt(st)

where ∇ denotes the vector of partial derivatives, the gradient

N. Hendrich 58

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Gradient-Descent methods for TD(λ)

I optimize the approximation error on the observed examples

I GD-methods adjust the paramter vector by a small amount in
the direction that would most reduce the error on that example:

~θt+1 = ~θt + α
[
Rλt − Vt(st)

]
∇~θtVt(st)

~θt+1 = ~θt + αδt~et

δt = rt+1 + γVt(st+1)− Vt(st)

~et = γλ~et−1 +∇~θtVt(st)

N. Hendrich 59

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

On-line Gradient-Descent TD(λ)

initialize parameters ~θ arbitrarily
repeat (for each epiode):
~e = 0
s ← initial state of episode

repeat (for each step of episode):
a← action given by π for s
eake action a, observe reward r and next state s ′

δ ← r + γV (s ′)− V (s)
~e ← γλ~e +∇~θV (s)
~θ ← ~θ + αδ~e
s ← s ′

until s is terminal

N. Hendrich 60

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Linear Methods

I assume that Vt is a linear function of the parameter vector

I column vector of features ~Φs for every state s

I same number of components as ~θt

I Vt(s) = ~θT
t
~Φs =

∑n
i=1 θt(i)Φs(i)

∇~θtVt(s) = ~Φs

I only one optimum ~θ, any method guaranteed to converge will
converge to the (global) optimum

I note: the feature functions Φ(s) can be highly non-linear in s

N. Hendrich 61

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Value prediction with function approximation

MSE (~θt) =
∑

s∈S P(s)
[
V π(s)− Vt(s)

]2
,

P is a distribution weighting the errors of different states

I P usually also gives the distribution of states used for training,

I therefore, also the states used for backups

I if we want to minimize error for some states: train the function
approximator on this distribution

I P may depend on the current policy π: the on-policy
distribution

I minimizing MSE related to a good policy at all?

N. Hendrich 62

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Example: Coarse coding

I 2D continuous state-space

I circular binary-features: Φ(x) = 1 if x inside circle, 0 otherwise

I receptive field of a feature

I coarse coding: representing a state with a number of
overlapping binary features

N. Hendrich 63

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Generalization in linear function approximation

I one weight parameter θj for each feature (circle) Φj

I training at a state s affects the weights of all features that
cover s

I generalization occurs on the union of the affected features
I the size (and shape) of the functions determine the detail that

can be represented and learned
N. Hendrich 64

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Effect of feature-width on generalization

N. Hendrich 65

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Tile Coding

I receptive fields of the features selected to cover the input space

I exhaustive partitions of the input space, called a tiling

I each tile is the receptive field for one binary feature

I examples: a regular grid, overlapping (shifted) grids, etc.

I efficient: only sum over “active” tiles, most gradients are 0

N. Hendrich 66

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

None-uniform grids

I tilings don’t need to be regular grids

I use tile shapes and sizes adapted to the problem at hand

I e.g., use finer tiles where the state-space requires better
precision

I e.g., (c) above will promote generalization along one diagonal
N. Hendrich 67

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Tile coding with hashing

I reduce memory requirements using hashing

I only allocate/use memory-cells encountered so far

I represent large (unimportant) parts of the state-space with
few large tiles, but add more tiles for the important parts
(or dimensions) of the state space

N. Hendrich 68

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Example: Go

1035 states, 105 binary features and parameters

(Sutton, presentation at ICML 2009)

N. Hendrich 69

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Radial basis functions

I RBFs are the natural generalization of coarse-coding to
continuous-value features, representing various degrees 0..1 to
which a feature is present

I Gaussian Φs(i) functions measure the distance between state s
and the feature center ci :

Φs(i) = exp
(
− ||s−ci ||

2

2σ2
i

)

N. Hendrich 70

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Control with Function Approximation

How to improve the policy π? Again, one idea is to follow the GPI
pattern: approximate Q(s, a) instead of V (s), then change the
policy by greedification.

I build Q(s, a) as a function with parameter vector ~θ.

I general gradient-descent update for action-value prediction is:

~θt+1 = ~θt + α
[
vt − Qt(st , at)

]
∇~θt

Qt(st , at).

~θt+1 = ~θt + αδt~et ,

δt = rt+1 + γQt(st+1, at+1)− Qt(st , a),

~et = γλ~et−1 + ∇~θt
Qt(st , at).

N. Hendrich 71

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Control with Function Approximation

Two examples:

I Sarsa(λ) (on-policy)

I Q(λ) (off-policy)

I linear, gradient-descent function approxiation (binary features)

I ε-greedy action selection

I compute sets of features Fa corresponding to the current state
s and all possible actions a

I use of eligibility traces more complex than in the tabular case

I each time a state encountered that has feature i , the trace for
feature i is set to 1 (instead of being incremented by 1)

N. Hendrich 72

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Linear Gradient-Descent Sarsa(λ) (1)
with binary features and ε-greedy policy

initialize parameters ~θ arbitrarily
repeat (for each epiode):
~e = 0
s, a← initial state and action of episode
Fa ← set of features present in s, a
repeat (for each step of episode):

for all i ∈ Fa:
e(i)← e(i) + 1 (accumulating traces)
or e(i)← 1 (replacing traces)

take action a, observe reward r and next state s ′

δ ← r −
∑

i∈Fa
θ(i)

. . .

N. Hendrich 73

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Linear Gradient-Descent Sarsa(λ) (2)

with probability 1− ε:
for all a ∈ A(s): // greedy actions
Fa ← set of features present in s, a
Qa ←

∑
i∈Fa

θ(i)
a← arg maxa Qa

else // exploration action with probability ε
a← a random action ∈ A(s)
Fa ← set of features present in s, a
Qa ←

∑
i∈Fa

θ(i)
δ ← δ + γQa
~θ ← ~θ + αδ~e
~e ← γλ~e

until s is terminal

N. Hendrich 74

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Off-Policy Gradient-Descent Watkins’s Q(λ) (1)
binary features, ε-greedy policy, accumulating traces

initialize parameters ~θ arbitrarily
repeat (for each epiode):
~e = 0
s, a← initial state and action of episode
Fa ← set of features present in s, a
repeat (for each step of episode):

for all i ∈ Fa : e(i)← e(i) + 1
take action a, observe reward r and next state s ′

δ ← r −
∑

i∈Fa
θ(i)

for all a ∈ A(s):
Fa ← set of features present in s, a
Qa ←

∑
i∈Fa

θ(i)
. . .

N. Hendrich 75

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Off-Policy Gradient-Descent Watkins’s Q(λ) (2)

. . .
δ ← δ + γmaxa Qa
~θ ← ~θ + αδ~e
~e ← γλ~e
with probability 1− ε:

for all a ∈ A(s):
Qa ←

∑
i∈Fa

θ(i)
a← arg maxa Qa

~e ← γλ~e
else
a← a random action ∈ A(s)
~e ← 0

until s is terminal

N. Hendrich 76

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Example: Mountain-car (repeated)

I underpowered car should climb a mountain-slope

I simplified physics model

I actions are full-throttle a ∈ {−1, 0,+1}
I but constant a = +1 is not sufficient to reach the summit

I car must go backwards first a bit or even oscillate to build
sufficient momentum to climb the mountain

I simple example of problems where the agent cannot reach the
goal directly, but must explore intermediate solutions that seem
counterintuitive

I remember: typical example of delayed reward

N. Hendrich 77

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Mountain-car: setup and reward function

I +100 reward for reaching the mountain-summit

I −1 reward for every timestep without reaching the summit

I simplified physics model:

xt+1 = xt + ẋt

ẋt+1 = ẋt + 0.001at +−0.0025 cos(3xt)

and x , ẋ are clipped to a certain range

I using regular grid-tiling

I every episode is terminated after 1000 timesteps

N. Hendrich 78

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Mountain-car: cost-to-go function −maxaQt(s, a)

Details: Sutton and Barto, chapter 8.10

N. Hendrich 79

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Mountain-car: analysis

I use optimistic initial estimates to encourage exploration

I no success during the first episodes:
Q(s, a) all negative initially

I visited states valued worse than unexplored states

N. Hendrich 80

University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Mountain-car:

I effect of α, λ, and the kind of traces on the early performance
of the mountain-car task.

N. Hendrich 81

University of Hamburg

MIN Faculty

Department of Informatics

Learning in Policy Space Reinforcement Learning (3)

RL taxonomy

Learning
Imitation

=1d
ng d)T0:a ;T0:s (f = D

Inverse RLModel-based RL

Model-free RL)s(V)s(V

)s(¼)s(¼

)s(¼
policy

dynamic prog.

policy policy

dyanmic prog.

=0t
Tg t)'s;a;r;s (f = D

demonstration dataexperience data

)s;a(R
)s;aj's(P)s(¼)s(¼)s;a(R)s(V

learn latent costslearn policyoptimize policylearn value fct.learn model

Policy Search

N. Hendrich 82

University of Hamburg

MIN Faculty

Department of Informatics

Learning in Policy Space Reinforcement Learning (3)

Learning in Policy Space

I convergence proofs are nice, but . . .

I . . . many tasks don’t require the optimal policy

I . . . survival of the learner also is important

I many applications cannot afford to explore the full state-space,
because there exist “deadly” parts

I more interested in a good policy than the optimal one π∗

I concentrate on those parts of the state-space that are safe

I experience shows that value-function gradients are often
unstable

N. Hendrich 83

University of Hamburg

MIN Faculty

Department of Informatics

Learning in Policy Space Reinforcement Learning (3)

Policy Gradient Methods

Gradients(NPG)
'Natural' Policy

Gradients (VPG)
'Vanilla' Policy

Methods
Likelihood Ratio

Methods (FD)
Finite Difference

Policy Gradient Methods

N. Hendrich 84

University of Hamburg

MIN Faculty

Department of Informatics

Learning in Policy Space Reinforcement Learning (3)

Policy Gradient Methods

I consider randomized policy µ(s, a) = Pr(a|s)
(deterministic policy is a special case)

I performance measure is

J(µ) = Eµ
[
r0 + γr1 + γ2r2 + . . .

]
I policy µθ(s, a) is parameterized by a parameter space θ ∈ IRd

I parametric performance measure becomes

J(θ) = Eθ
[
r0 + γr1 + γ2r2 + . . .

]
I iterative solution using gradient-descent algoriths

N. Hendrich 85

University of Hamburg

MIN Faculty

Department of Informatics

Learning in Policy Space Reinforcement Learning (3)

Policy Gradient Update

I policy gradient update:

θk+1 = θk + α∇θJ(θk)

I guarantee for performance improvements?!

J(θµ′) ≥ J(θµ)⇒ µ′ at least better or equal to µ

I approximate the gradient using supervised learning
I collect data D = {δθi , δJi} (that is, sample gradients).

I perturb the parameters: θ + δθ
I apply resulting new policy µ(θ + δθ) to get
δJi = J)(θ + δθ)− J(θ)

I finite difference gradient estimation (FD):

gFD(θ) = (∆ΘT∆Θ)−1∆Θ∆J

I gradient update:
θ ← θ + αgtextFD(θ)

(Note: Simultaneous perturbation stochastic approximation, wikipedia)

N. Hendrich 86

University of Hamburg

MIN Faculty

Department of Informatics

Learning in Policy Space Reinforcement Learning (3)

LSPI: Least Squares Policy Iteration

I gradient-descent methods are sensitive to the choice of learning
rates and initial parameter values.

I calculating a policy from the value function is difficult

I least-square temporal difference (LSTD) method: LSPI.

I Bellman residual minimization

I least squares fixed-point approximation

N. Hendrich 87

University of Hamburg

MIN Faculty

Department of Informatics

Learning in Policy Space Reinforcement Learning (3)

LSPI: Least Squares Policy Iteration

the Q-function for a given policy π fulfils for any s, a:

Qπ(s, a) = R(s, a) + γ
∑

s′ P(s ′|a, s)Qπ(s ′, π(s ′))

if we have n data points D = {(si , ai , ri , s ′i)}ni=1, we require that
this equation holds (approximately) for these n data points:

∀i : Qπ(si , ai) = ri + γQπ(s ′i , π(s ′i))

written in vector notation: Q = R + gQ with N-dim data
vectors Q, R, Q

I written as optimization: minimize the Bellman residual error

L(Qπ) = ||R + γPΠQπ − Qπ|| (true residual)

=
∑n

i=1

[
Qπ(si , ai)− ri − γQπ(s ′i , π(s ′i))

]2
= ||R − Q + γQ||2

N. Hendrich 88

University of Hamburg

MIN Faculty

Department of Informatics

Learning in Policy Space Reinforcement Learning (3)

Example: Learning how to ride a bicycle

I states = {θ, θ̇, ω, ω̇, ω̈, ψ}
θ is the angle of the handlebar,

ω the vertical angle of the bicycle,

ψ is the angle of the bicycle to the goal.
I actions: {τ, ν}
τ ∈ {−2, 0, 2} the torque applied to the handlebar,

ν ∈ {−0.02, 0, 0.02} the displacement of the rider.

I again, simplified physics model for simulation
I choose function approximation, run RL. . .

(1, ω, ω̇, ω2, ωω̇, θ, θ̇, θ2, θθ̇, ωθ, ωθ2, ω2θ, ψ, ψ2, ψθ, ψ, ψ
2
, ψθ)

ipvs.informatik.uni-stuttgart.de/mlr/wp-content/uploads/2013/11/04-FunctionApproximation.pdf

N. Hendrich 89

University of Hamburg

MIN Faculty

Department of Informatics

Learning in Policy Space Reinforcement Learning (3)

Learning how to ride a bicycle

Lagoudakis & Parr, JMLR 2003

N. Hendrich 90

University of Hamburg

MIN Faculty

Department of Informatics

Learning in Policy Space Reinforcement Learning (3)

Learning how to ride a bicycle

Lagoudakis & Parr, JMLR 2003

N. Hendrich 91

University of Hamburg

MIN Faculty

Department of Informatics

Learning in Policy Space Reinforcement Learning (3)

Application: robot learning in joint-space

I learn a model for accurate control in joint-space

I if we could map states to the required actions, this could be
executed on the robot immediately:

N. Hendrich 92

University of Hamburg

MIN Faculty

Department of Informatics

Learning in Policy Space Reinforcement Learning (3)

Application: model-based robot motion

I learn a model for accurate control in joint-space
I compare with traditionally modeled solution
I compliant, low-gain control of fast and accurate motions

Nguyen-Tuong Peters, IROS 2008

N. Hendrich 93

University of Hamburg

MIN Faculty

Department of Informatics

Learning in Policy Space Reinforcement Learning (3)

Learning a forward model

1 learn an forward model of the system dynamics

2 use an optimal-control model to derive the policy

N. Hendrich 94

University of Hamburg

MIN Faculty

Department of Informatics

Inverse RL and Apprenticeship Learning Reinforcement Learning (3)

Apprenticeship Learning

I learning from a teachers’ demonstration
I demonstration on the target system
I demonstration on another system
I with or without model of the target system

I one of the hot topics in RL today

I several recent examples: robot table-tennis playing,
autonomous car-driving, helicopter aerobatics

I aka inverse RL: given a demonstration (= policy), derive the
teachers’ reward function, then reproduce on the target system

N. Hendrich 95

University of Hamburg

MIN Faculty

Department of Informatics

Inverse RL and Apprenticeship Learning Reinforcement Learning (3)

Apprenticeship Learning: Motivation

I see original paper

N. Hendrich 96

University of Hamburg

MIN Faculty

Department of Informatics

Inverse Reinforcement Learning Reinforcement Learning (3)

Current Research Areas

I hierarchical reinforcement learning
I inverse RL: learning from demonstrations

I introduction to inverse RL
I inverse RL vs. behavioral cloning
I IRL algorithms

I learning high-DOF problems (humanoids ≈ 70-DOF)

I combining learning and planning

N. Hendrich 97

University of Hamburg

MIN Faculty

Department of Informatics

Inverse Reinforcement Learning Reinforcement Learning (3)

Inverse RL: informal definition

Given:

measurements of an agent’s behaviour π over time (st , at , s
′
t),

possibly, the transition model T (s, a, s ′).

not given: the reward model.

Goal: find the reward funtion Rπ(s, a, s ′)

N. Hendrich 98

University of Hamburg

MIN Faculty

Department of Informatics

Inverse Reinforcement Learning Reinforcement Learning (3)

Inverse RL: big picture

Expert's Demonstration

RL Agent

Dynamics Model

Imitation/Apprenticeship
Learning

Reward Function

Inverse RL

Policy

N. Hendrich 99

University of Hamburg

MIN Faculty

Department of Informatics

Inverse Reinforcement Learning Reinforcement Learning (3)

Inverse RL: problem formulation

Given:
I state space S , action space A
I transition model T (s, a, s ′) = P(s ′|s, a)
I not given reward function R(s, a, s ′)
I teacher’s demonstration (from teacher’s policy π∗):

s0, a0, s1, a1, . . . ,

Inverse Reinforcement Learning (IRL):
I recover R

Apprenticeship learning via IRL:
I use R to compute a good policy π

Behaviour cloning:
I using supervised learning to learn the teacher’s policy

N. Hendrich 100

University of Hamburg

MIN Faculty

Department of Informatics

Inverse Reinforcement Learning Reinforcement Learning (3)

IRL vs. Behavioral cloning

I behavioral cloning: formulated as a supervised learning problem
(e.g. using SVM, NN, deep learning, . . .)
I given (s0, a0), (s1, a1), . . . generate from a policy π∗

I estimate a policy mapping from s to a

I this can only mimic the demonstrated trajectories of the
teacher
I can not change goal/destination
I can not handle non-Markovian enviroment

I IRL vs. behaviour cloning is R∗ vs π∗.

N. Hendrich 101

University of Hamburg

MIN Faculty

Department of Informatics

Inverse Reinforcement Learning Reinforcement Learning (3)

Inverse RL: mathematical formulation

Given:

I state space S , action space A

I transition model T (s, a, s ′) = P(s ′|s, a)

I not given reward function R(s, a, s ′)

I teacher’s demonstration (from teacher’s policy π∗):
s0, a0, s1, a1, . . . ,

Find reward function R such that

E

[∞∑
t=0

γtR∗(st)|π∗
]
≥ E

[∞∑
t=0

γtR∗(st)|π
]
, ∀π

N. Hendrich 102

University of Hamburg

MIN Faculty

Department of Informatics

Inverse Reinforcement Learning Reinforcement Learning (3)

Inverse RL: problems

Find reward function R such that

E

[∞∑
t=0

γtR∗(st)|π∗
]
≥ E

[∞∑
t=0

γtR∗(st)|π
]
, ∀π

I R = 0 is a solution for this equation . . .

I solution is not unique, multiple R∗ can satisfy the equation

I teacher’s π∗ in only given partially, so unclear how to evaluate
the expectation terms.

N. Hendrich 103

University of Hamburg

MIN Faculty

Department of Informatics

Inverse Reinforcement Learning Reinforcement Learning (3)

Applications

N. Hendrich 104

University of Hamburg

MIN Faculty

Department of Informatics

Inverse Reinforcement Learning Reinforcement Learning (3)

References

Andrew Y. Ng, Stuart J. Russell: Algorithms for Inverse
Reinforcement Learning. ICML 2000: 663-670

Pieter Abbeel, Andrew Y. Ng: Apprenticeship learning via
inverse reinforcement learning. ICML 2004

Pieter Abbeel, Adam Coates, Morgan Quigley, Andrew Y. Ng:
An Application of Reinforcement Learning to Aerobatic
Helicopter Flight. NIPS 2006: 1-8

Adam Coates, Pieter Abbeel, Andrew Y. Ng: Apprenticeship
learning for helicopter control. Commun. ACM 52(7): 97-105
(2009)

N. Hendrich 105

University of Hamburg

MIN Faculty

Department of Informatics

Recap Reinforcement Learning (3)

Summary: Reinforcement Learning

I agent in a (known or unknown) environment

I agent takes actions, receives a scalar reward

I learn a policy that maximizes accumulated reward

I learn how to avoid bad parts of the state-space

I in-between unsupervised and supervised learning

I learn how to reach delayed rewards

I exploration vs. exploitation dilemma

I very general setup, many application areas

N. Hendrich 106

University of Hamburg

MIN Faculty

Department of Informatics

Recap Reinforcement Learning (3)

Markov Decision Process

I MDP:
I states s ∈ S
I actions a ∈ A(s)
I immediate reward r after taking action a in state s
I transition probabilities Pa

ss′

I reward probabilities Ra
ss′

I accumulated return Rt =
∑t

i=0 γ
i ri

I Markov property/assumption

I goal: maximize return R

I sub-goal: learn policy π that leads to good actions

N. Hendrich 107

University of Hamburg

MIN Faculty

Department of Informatics

Recap Reinforcement Learning (3)

Value functions

I assigning values to states: estimation of future rewards
I V (s) state value function
I Q(s, a) state-action value function

I Bellman equation: relating V (s) to V (s ′)
I backup-operations based on the Bellman equation

I optimal value-functions V ∗(s) and Q∗(s, a)

I greedy policy π∗ derived from V ∗ is optimal

N. Hendrich 108

University of Hamburg

MIN Faculty

Department of Informatics

Recap Reinforcement Learning (3)

Algorithms

I Dynamic Programming

I Policy evaluation and policy iteration

I Monte-Carlo methods

I Temporal-Difference idea, SARSA and Q-learning

I TD(λ) methods

I combining value-functions with function approximation

I direct policy search methods

N. Hendrich 109

	TD() and Eligibility Traces
	Reinforcement Learning in Continuous Spaces
	Learning in Policy Space
	Inverse RL and Apprenticeship Learning
	Inverse Reinforcement Learning
	Recap

