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TD(λ) and Eligibility Traces

I Q-learning and SARSA look one step into the future

I updating Q(s, a) online

I while Monte-Carlo waits until episode ends

⇒ the TD(λ) algorithms combine both ideas

I a family of methods to improve learning (e.g. speed)

I better handle delayed rewards (far in the future)

I update multiple Q values, not just current Q(s, a)

I allows MC techniques to be used on non-episodic tasks

Watkins 1989, Jaakkola, Jordan and Singh 1994, Sutton 1998, Singh and Sutton 1996

N. Hendrich 3



University of Hamburg

MIN Faculty

Department of Informatics

TD(λ) and Eligibility Traces Reinforcement Learning (3)

TD(λ) and Eligibility Traces

theoretical viewpoint, or forward view:

I a bridge from TD to Monte Carlo methods

I TD methods augmented with eligibility traces produce a
spectrum of algorithms, with Monte Carlo methods at one end,
and one-step TD methods at the other

I intermediate methods maybe better than either “pure” method

pragmatical viewpoint, the backward view:

I gain intuition about the algorithms

I the trace marks the memory parameters associated with the
event as (eligible) candidates for learning changes

I TD steps update multiple (visited) states or actions
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n-step TD prediction

consider estimating V π(s) from sample episodes generated
following policy π

I MC methods perform a backup based on the entire episode
I simple TD methods just consider the next reward, plus the

discounted value of the state one step later, which encodes the
estimates of the remaining rewards

⇒ why not use n-step methods that perform a backup based on
an intermediate number of rewards: more than one, but less
than all?

I those methods are still TD methods, because they update an
earlier estimate based on how it differs from a later estimate;
in this case up to n steps later.
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Spectrum of n-step TD methods

spectrum of n-step methods, ranging from simple one-step TD methods to the full-episode backups of Monte Carlo

methods
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The n-step return

Rt = rt+1 + γrt+2 + γ2rt+3 + · · ·+ γT−t−1rT MonteCarlo

R
(1)
t = rt+1 + γVt(st+1) 1− step

R
(2)
t = rt+1 + γrt+2 + γ2Vt(st+2) 2− step

. . .

R
(n)
t = rt+1 + γrt+2 + γ2rt+3 + · · ·+ γn−1rt+n + γnVt(st+n)

also called the corrected n-step truncated return: the Return
truncated after n-steps, and then approximately corrected by
adding the estimated value of the n-th next state.
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The n-step backup

I one backup operation towards the n-step return

I in the tabular case:

∆Vt(st) = α
[
R
(n)
t − Vt(st)

]
,

with α a positive step-size parameter

I all other states s 6= st are not updated

I on-line update: during an episode, Vt+1(s) = Vt(s) + ∆Vt(s)

I off-line update: increments are accumulated in a separate array,
but not used to change the value estimates until the end of this
episode.
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Example: n-step TD on Random Walk

I random-walk starting at state (C )

I one step to the left or right at each step, equal probabilities

I reward 0 on every step, 1 for reaching the right goal state

I episode terminates on either the left or right goal state

I in this case, V (s) is just the probability of terminating on the
right when starting in S : {0, 16 ,

2
6 ,

3
6 ,

4
6 ,

5
6 , 1}
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Example: TD(0) on Random Walk

Value function learned by TD(0) after 0,1,10,100 episodes for a 5-state random walk.
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Example: n-step TD on Random Walk

I n-step TD methods on the 19-state random walk

I performance measured as RMS error:
∑

s [Vt(s)− V (s)]2

I as a function of step-size α for different values of n

I online (during episode) and off-line updates
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The Forward view of TD(λ)

I we can also combine different
n-step methods

I e.g., backup using half a two-step return
and half a four-step return,

Rave
t = 1

2R
(2)
t + 1

2R
(4)
t .

I well-defined, if weights sum to 1

I a completely new class of algorithms

I combining properties of the different
individual methods
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Backup diagram for TD(λ)

I one particular way

to average n-step backups

weighted proportional to λn−1

I λ-return:
Rλt = (1− λ)

∑∞
n=1 λ

n−1R
(n)
t
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Weighting of each n-step return

Rλt = (1− λ)
∑T−t−1

n=1 λn−1R
(n)
t + λT−t−1Rt

λ = 1: main sum is zero, remaining term is Rt : Monte Carlo

λ = 0: reduces to R
(1)
t , so TD(0)
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Example: TD(λ) on the Random Walk

I performance of TD(λ) on the 19-state random walk

I step-size α, different values of λ

I smallest RMS error with intermediate values of λ
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The Forward view

I from each state s visited, look forward in time to all future
rewards, and decide how best to combine them.

I problem: this is hard to implement, using at each step
knowledge of what will happen many steps later . . .
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The Backward view of TD(λ)

I reserve an additional memory variable for each state,

the eligibility trace et(s) ∈ IR+

I On each step t, the elibibility traces for all states decay by γλ,
but the trace for the one state visited on the step is
incremented by 1:

et(s) =

{
γλet−1(s) if s 6= st ;,

γλet−1(s) + 1, if s = st ;
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The Backward view of TD(λ)

I the traces record which states have recently been visited,

I where recently is defined in terms of γλ

I the traces indicate the degree to which each state
is eligible to change during learning

I for example, the TD “error” for state-value prediction is

δt = rt+1 + γVt(st+1)− Vt(st)

I and the TD(λ) update becomes:

∆Vt(s) = αδtet(s), for all s ∈ S
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On-line tabular TD(λ)

initialize V (s) arbitrarily and e(s) = 0, for all s ∈ S
repeat (for each episode):

initialize s
repeat (for each step of episode):

a← action given by policy π for s
take action a, observe reward r and next state s ′

δ ← r + γV (s ′)− V (s)
e(s)← e(s) + 1
for all s:

V (s)← V (s) + αδe(s)
e(s)← γλe(s)

s ← s ′

until s is terminal
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The Backward view

I ”shouting” updates back to previously visited states
I λ = 0: all traces are zero, except for those at st ,

Q-learning and SARSA are TD(0) methods
I 0 < λ < 1: more of the preceding states are changed, but each

more temporally distant state is changed less
I λ = 1: credit given to earlier states falls by γ at each step,

giving Monte Carlo for γ = 1
N. Hendrich 20
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Equivalence of forward and backward view

I trying to build an online-algorithm (backward) that achieves
the same weight updates as the off-line λ-return algorithm

I align the forward (theoretical) and backward (implementation)
views of TD(λ)

I want to show that the value-function updates are the same at
the end of an episode, so

T−1∑
t=0

∆V TD
t (s) =

T−1∑
t=0

∆V λ
t (st)Isst , for all s ∈ S ,

I see Sutton and Barto section 7.4 for the math and proof ideas
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Example: Online TD(λ) on the Random Walk

I performance of online TD(λ) on the 19-state random walk

I step-size α, different values of λ

I note: a bit better performance than the off-line algorithm
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Sarsa(λ)

How to generalize TD(λ) for control? That is, learning Q(s, a)
instead of learning V (s)?

I Qt+1(s, a) = Qt(s, a) + αδtet(s, a), for all (s, a)

δt = rt+1 + γQt(st+1, at+1)− Qt(st , at)

et(s, a) =

{
γλet−1(s, a) + 1, if s = st and a = at ;

γλet−1(s, a) otherwise

I from time to time, improve policy π using greedification
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Sarsa(λ) backup diagram
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Sarsa(λ) algorithm

initialize Q(s, a) arbitrarily and e(s, a) = 0, for all s, a
repeat (for each episode):

initialize s, a
repeat (for each step of episode):
a← action given by policy π for s
take action a, observe reward r and next state s ′

δ ← r + γQ(s ′, a′)− Q(s, a)
e(s, a)← e(s, a) + 1
for all s, a:
Q(s, a)← Q(s, a) + αδe(s, a)
e(s, a)← γλe(s, a)

s ← s ′, a← a′

until s is terminal

N. Hendrich 25



University of Hamburg

MIN Faculty

Department of Informatics

TD(λ) and Eligibility Traces Reinforcement Learning (3)

Speedup of learning using Sarsa(λ)

I example path of the learner, ending in goal state ’*’

I TD(0) methods will only update the single Q(s, a) for the
immediately preceding state

I eligibility-trace-methods update many Q(s, a) values

weighted by relevance
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Q(λ) algorithm?!

I Q(λ): Watkins’s and Peng’s algorithms
I Q-learning learns greedy policy while following another policy
I n-step update only possible while using greedy policy

I eligibility traces for actor-critic methods
I replacing traces vs. accumulating traces

I clip et(s) ≤ 1, can improve learning speed

I methods that use variable λ

I implementation issues

I can TD(λ) also works in non-Markovian environments?

I see Sutton and Barto, chapter 7 for details
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Q(λ)

I learning Q(s, a) for greedy policy while following current π

I two different ways to handle non-greedy actions
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Summary: TD(λ)

A family of improved temporal-difference learning algorithms to
speed-up learning

I interpolate between 1-step TD(0) and
n-step TD(n) Monte-Carlo methods

I update more than one element of V or Q at each time step

I simple implementation using eligibility traces

I parameter λ sets the time-scale of the learning
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Generalization and function approximation

Application of RL ideas to “real world” problems?!
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Generalization and function approximation

so far, we considered the so-called tabular case:

I discrete state and action spaces,
S = {s0, s1, . . . , sn}, A = {a0, a1, . . . , am}

I state-space small enough for in-memory representation

I many theoretical results assume that all (s, a) pairs are visited
infinitely often

I corresponding time requirements in addition to memory

for continuous state-spaces we need generalization:

I most states visited never experienced exactly before

I need to generalize from previously experienced similar states

I combine RL algorithms with function approximation
N. Hendrich 31
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The key issue: Generalization

“How can experience with a limited subset of the state space be
usefully generalized to produce a good approximation over a much
larger subset?”

I most states visited never experienced exactly before

I most actions never performed exactly before

I “complex sensations”: e.g., visual images, high-DOF problems
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Generalization via function approximation

Basic idea: represent continuous state-space or state-action-space
using feature functions with parameters ~θ ∈ {Θ},
with |Θ| � |S | or |Θ| � |S × A|. Then, use RL-algorithms to
adjust the parameters θ;

All common function approximation methods can be used:

I polynomial and spline interpolation functions (low degrees)

I statistical curve-fitting, decision trees

I artificial neural-networks (multi-layer perceptron)

I kernel-SVMs

I . . .

where the context is often high-DOF problems.
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Example: Pacman

I let’s say we discover through experience
that this state is bad:

I in naive Q-learning, we know nothing
about this state or its neighbor states

I or even this one:

(idea and images: Abbeel & Peters, RL tutorial, ICRA-2012)
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Pacman features

Solution: describe the environment state using a vector of features

I features are functions from states to
real numbers (often 0/1) that capture
important properties of the state

I examples:
I distance to closest ghost
I distance to closest dot
I number of ghosts
I 1/(dist to dot)2

I is Pacman in a tunnel? (0/1)
I . . . . etc.

I of course, can also describe a Q-state (s, a) with features
I e.g. action (s, a) moves closer to food

N. Hendrich 35



University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Pacman features

I using a feature representation, we can write a Q-function or
the value-function V for any state using a few weights:

V (s) = w1f1(s) + w2f2(s) + . . .+ wnfn(s)

Q(s, a) = w1f1(s, a) + w2f2(s, a) + . . .+ wnfn(s, a)

I advantage: experience is summed up in a few powerful numbers

I disadvantage: states may share features but be very different in
value
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Pacman features

N. Hendrich 37



University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Q-function: tabular vs. linear

(Abbeel & Peters, ICRA 2012)
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Value prediction with function approximation

I try to estimate V π(s) from experience generated using policy π

I but V π(s) no longer repesented as a table,

I instead approximated as V π
t,θ

(
(s)
)

at time step t

I measure approximation error using suitable loss-functions,

e.g. weighted mean-squared error:

MSE (~θ) =
∑

s∈S P(s)
[
V π(s)− V π

t,θ(s)
]2

I where P is a distribution weighting the errors of different states

I usually impossible to reduce the error to zero at all states

I remember: many more states s than parameters θ
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Interpretation of the least-squares cost function

physical interpretation geometrical interpretation
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Function approximation: example data
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Fitting an easy model: polynomial with n = 0
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More features: polynomial with n = 1
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More features: n = 2
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More features: n = 8
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More features: n = 15
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More features: n = 200
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More features: n = 200
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Training error vs. test error

(remember the magic tool: leave-one-out cross-validation)
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Selecting the approximating functions

What to do when you don’t know the features?

I useful features are known in many real
applications

I however, we almost certainly don’t know
all features needed

I example: rigid body dynamics
I friction has no good features,

and may be self-referential
I unknown dynamics causes huge problems

(requires more state variables)

I there may also be too many features. . .
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Can we proceed when we don’t know the features?

Yes!

we need to find machine learning approaches that generate the
features directly based on the data.

1 radial basis functions: create an optimal smooth approximation

2 locally-weighted regression: localize relevant parts of the data
and try to interpolate

3 kernel regression: find useful features by going into function
space using a kernel
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Better features: radial-basis functions
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Locally, all data is linear
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Locally linear solutions
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Locally linear solutions for a query
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Exponential kernel
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Value prediction with function approximation

I try to estimate V π(s) from experience generated using policy π

I but V π(s) no longer repesented as a table,

I instead approximated as V π
t,θ

(
(s)
)

at time step t

I measure approximation error using suitable loss-functions,

e.g. weighted mean-squared error:

MSE (~θ) =
∑

s∈S P(s)
[
V π(s)− V π

t,θ(s)
]2

I where P is a distribution weighting the errors of different states

I usually impossible to reduce the error to zero at all states

I remember: many more states s than parameters θ
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Gradient-Descent methods

I parameter vector ~θ is a column vector
with a fixed number of real-valued components

I assume that Vθ(s) is a smooth differentiable function of ~θ for
all s ∈ S

I on each time step t we observe a new example st → V π(st)

~θt+1 = ~θt − 1
2α∇~θt

[
V π(st)− Vt(st)

]2
~θt+1 = ~θt + α

[
V π(st)− Vt(st)

]
∇~θtVt(st)

where ∇ denotes the vector of partial derivatives, the gradient
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Gradient-Descent methods for TD(λ)

I optimize the approximation error on the observed examples

I GD-methods adjust the paramter vector by a small amount in
the direction that would most reduce the error on that example:

~θt+1 = ~θt + α
[
Rλt − Vt(st)

]
∇~θtVt(st)

~θt+1 = ~θt + αδt~et

δt = rt+1 + γVt(st+1)− Vt(st)

~et = γλ~et−1 +∇~θtVt(st)
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On-line Gradient-Descent TD(λ)

initialize parameters ~θ arbitrarily
repeat (for each epiode):
~e = 0
s ← initial state of episode

repeat (for each step of episode):
a← action given by π for s
eake action a, observe reward r and next state s ′

δ ← r + γV (s ′)− V (s)
~e ← γλ~e +∇~θV (s)
~θ ← ~θ + αδ~e
s ← s ′

until s is terminal
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Linear Methods

I assume that Vt is a linear function of the parameter vector

I column vector of features ~Φs for every state s

I same number of components as ~θt

I Vt(s) = ~θT
t
~Φs =

∑n
i=1 θt(i)Φs(i)

∇~θtVt(s) = ~Φs

I only one optimum ~θ, any method guaranteed to converge will
converge to the (global) optimum

I note: the feature functions Φ(s) can be highly non-linear in s
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Value prediction with function approximation

MSE (~θt) =
∑

s∈S P(s)
[
V π(s)− Vt(s)

]2
,

P is a distribution weighting the errors of different states

I P usually also gives the distribution of states used for training,

I therefore, also the states used for backups

I if we want to minimize error for some states: train the function
approximator on this distribution

I P may depend on the current policy π: the on-policy
distribution

I minimizing MSE related to a good policy at all?
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Example: Coarse coding

I 2D continuous state-space

I circular binary-features: Φ(x) = 1 if x inside circle, 0 otherwise

I receptive field of a feature

I coarse coding: representing a state with a number of
overlapping binary features
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Generalization in linear function approximation

I one weight parameter θj for each feature (circle) Φj

I training at a state s affects the weights of all features that
cover s

I generalization occurs on the union of the affected features
I the size (and shape) of the functions determine the detail that

can be represented and learned
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Effect of feature-width on generalization
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Tile Coding

I receptive fields of the features selected to cover the input space

I exhaustive partitions of the input space, called a tiling

I each tile is the receptive field for one binary feature

I examples: a regular grid, overlapping (shifted) grids, etc.

I efficient: only sum over “active” tiles, most gradients are 0
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None-uniform grids

I tilings don’t need to be regular grids

I use tile shapes and sizes adapted to the problem at hand

I e.g., use finer tiles where the state-space requires better
precision

I e.g., (c) above will promote generalization along one diagonal
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Tile coding with hashing

I reduce memory requirements using hashing

I only allocate/use memory-cells encountered so far

I represent large (unimportant) parts of the state-space with
few large tiles, but add more tiles for the important parts
(or dimensions) of the state space
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Example: Go

1035 states, 105 binary features and parameters

(Sutton, presentation at ICML 2009)
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Radial basis functions

I RBFs are the natural generalization of coarse-coding to
continuous-value features, representing various degrees 0..1 to
which a feature is present

I Gaussian Φs(i) functions measure the distance between state s
and the feature center ci :

Φs(i) = exp
(
− ||s−ci ||

2

2σ2
i

)
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Control with Function Approximation

How to improve the policy π? Again, one idea is to follow the GPI
pattern: approximate Q(s, a) instead of V (s), then change the
policy by greedification.

I build Q(s, a) as a function with parameter vector ~θ.

I general gradient-descent update for action-value prediction is:

~θt+1 = ~θt + α
[
vt − Qt(st , at)

]
∇~θt

Qt(st , at).

~θt+1 = ~θt + αδt~et ,

δt = rt+1 + γQt(st+1, at+1)− Qt(st , a),

~et = γλ~et−1 + ∇~θt
Qt(st , at).
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Control with Function Approximation

Two examples:

I Sarsa(λ) (on-policy)

I Q(λ) (off-policy)

I linear, gradient-descent function approxiation (binary features)

I ε-greedy action selection

I compute sets of features Fa corresponding to the current state
s and all possible actions a

I use of eligibility traces more complex than in the tabular case

I each time a state encountered that has feature i , the trace for
feature i is set to 1 (instead of being incremented by 1)

N. Hendrich 72



University of Hamburg

MIN Faculty

Department of Informatics

Reinforcement Learning in Continuous Spaces Reinforcement Learning (3)

Linear Gradient-Descent Sarsa(λ) (1)
with binary features and ε-greedy policy

initialize parameters ~θ arbitrarily
repeat (for each epiode):
~e = 0
s, a← initial state and action of episode
Fa ← set of features present in s, a
repeat (for each step of episode):

for all i ∈ Fa:
e(i)← e(i) + 1 (accumulating traces)
or e(i)← 1 (replacing traces)

take action a, observe reward r and next state s ′

δ ← r −
∑

i∈Fa
θ(i)

. . .
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Linear Gradient-Descent Sarsa(λ) (2)

with probability 1− ε:
for all a ∈ A(s): // greedy actions
Fa ← set of features present in s, a
Qa ←

∑
i∈Fa

θ(i)
a← arg maxa Qa

else // exploration action with probability ε
a← a random action ∈ A(s)
Fa ← set of features present in s, a
Qa ←

∑
i∈Fa

θ(i)
δ ← δ + γQa
~θ ← ~θ + αδ~e
~e ← γλ~e

until s is terminal
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Off-Policy Gradient-Descent Watkins’s Q(λ) (1)
binary features, ε-greedy policy, accumulating traces

initialize parameters ~θ arbitrarily
repeat (for each epiode):
~e = 0
s, a← initial state and action of episode
Fa ← set of features present in s, a
repeat (for each step of episode):

for all i ∈ Fa : e(i)← e(i) + 1
take action a, observe reward r and next state s ′

δ ← r −
∑

i∈Fa
θ(i)

for all a ∈ A(s):
Fa ← set of features present in s, a
Qa ←

∑
i∈Fa

θ(i)
. . .
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Off-Policy Gradient-Descent Watkins’s Q(λ) (2)

. . .
δ ← δ + γmaxa Qa
~θ ← ~θ + αδ~e
~e ← γλ~e
with probability 1− ε:

for all a ∈ A(s):
Qa ←

∑
i∈Fa

θ(i)
a← arg maxa Qa

~e ← γλ~e
else
a← a random action ∈ A(s)
~e ← 0

until s is terminal
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Example: Mountain-car (repeated)

I underpowered car should climb a mountain-slope

I simplified physics model

I actions are full-throttle a ∈ {−1, 0,+1}
I but constant a = +1 is not sufficient to reach the summit

I car must go backwards first a bit or even oscillate to build
sufficient momentum to climb the mountain

I simple example of problems where the agent cannot reach the
goal directly, but must explore intermediate solutions that seem
counterintuitive

I remember: typical example of delayed reward
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Mountain-car: setup and reward function

I +100 reward for reaching the mountain-summit

I −1 reward for every timestep without reaching the summit

I simplified physics model:

xt+1 = xt + ẋt

ẋt+1 = ẋt + 0.001at +−0.0025 cos(3xt)

and x , ẋ are clipped to a certain range

I using regular grid-tiling

I every episode is terminated after 1000 timesteps
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Mountain-car: cost-to-go function −maxaQt(s, a)

Details: Sutton and Barto, chapter 8.10
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Mountain-car: analysis

I use optimistic initial estimates to encourage exploration

I no success during the first episodes:
Q(s, a) all negative initially

I visited states valued worse than unexplored states
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Mountain-car:

I effect of α, λ, and the kind of traces on the early performance
of the mountain-car task.
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RL taxonomy

Learning
Imitation

=1d
ng d)T0:a ;T0:s (f = D

Inverse RLModel-based RL

Model-free RL)s(V )s(V

)s(¼)s(¼

)s(¼
policy

dynamic prog.

policy policy

dyanmic prog.

=0t
Tg t)'s;a;r;s (f = D

demonstration dataexperience data

)s;a(R
)s;aj's(P )s(¼ )s(¼ )s;a(R)s(V

learn latent costslearn policyoptimize policylearn value fct.learn model

Policy Search
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Learning in Policy Space

I convergence proofs are nice, but . . .

I . . . many tasks don’t require the optimal policy

I . . . survival of the learner also is important

I many applications cannot afford to explore the full state-space,
because there exist “deadly” parts

I more interested in a good policy than the optimal one π∗

I concentrate on those parts of the state-space that are safe

I experience shows that value-function gradients are often
unstable
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Policy Gradient Methods

Gradients(NPG)
'Natural' Policy

Gradients (VPG)
'Vanilla' Policy

Methods
Likelihood Ratio

Methods (FD)
Finite Difference

Policy Gradient Methods
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Policy Gradient Methods

I consider randomized policy µ(s, a) = Pr(a|s)
(deterministic policy is a special case)

I performance measure is

J(µ) = Eµ
[
r0 + γr1 + γ2r2 + . . .

]
I policy µθ(s, a) is parameterized by a parameter space θ ∈ IRd

I parametric performance measure becomes

J(θ) = Eθ
[
r0 + γr1 + γ2r2 + . . .

]
I iterative solution using gradient-descent algoriths
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Policy Gradient Update

I policy gradient update:

θk+1 = θk + α∇θJ(θk)

I guarantee for performance improvements?!

J(θµ′) ≥ J(θµ)⇒ µ′ at least better or equal to µ

I approximate the gradient using supervised learning
I collect data D = {δθi , δJi} (that is, sample gradients).

I perturb the parameters: θ + δθ
I apply resulting new policy µ(θ + δθ) to get
δJi = J)(θ + δθ)− J(θ)

I finite difference gradient estimation (FD):

gFD(θ) = (∆ΘT∆Θ)−1∆Θ∆J

I gradient update:
θ ← θ + αgtextFD(θ)

(Note: Simultaneous perturbation stochastic approximation, wikipedia)
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LSPI: Least Squares Policy Iteration

I gradient-descent methods are sensitive to the choice of learning
rates and initial parameter values.

I calculating a policy from the value function is difficult

I least-square temporal difference (LSTD) method: LSPI.

I Bellman residual minimization

I least squares fixed-point approximation
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LSPI: Least Squares Policy Iteration

the Q-function for a given policy π fulfils for any s, a:

Qπ(s, a) = R(s, a) + γ
∑

s′ P(s ′|a, s)Qπ(s ′, π(s ′))

if we have n data points D = {(si , ai , ri , s ′i )}ni=1, we require that
this equation holds (approximately) for these n data points:

∀i : Qπ(si , ai ) = ri + γQπ(s ′i , π(s ′i ))

written in vector notation: Q = R + gQ with N-dim data
vectors Q, R, Q

I written as optimization: minimize the Bellman residual error

L(Qπ) = ||R + γPΠQπ − Qπ|| (true residual)

=
∑n

i=1

[
Qπ(si , ai )− ri − γQπ(s ′i , π(s ′i ))

]2
= ||R − Q + γQ||2
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Example: Learning how to ride a bicycle

I states = {θ, θ̇, ω, ω̇, ω̈, ψ}
θ is the angle of the handlebar,

ω the vertical angle of the bicycle,

ψ is the angle of the bicycle to the goal.
I actions: {τ, ν}
τ ∈ {−2, 0, 2} the torque applied to the handlebar,

ν ∈ {−0.02, 0, 0.02} the displacement of the rider.

I again, simplified physics model for simulation
I choose function approximation, run RL. . .

(1, ω, ω̇, ω2, ωω̇, θ, θ̇, θ2, θθ̇, ωθ, ωθ2, ω2θ, ψ, ψ2, ψθ, ψ, ψ
2
, ψθ)

ipvs.informatik.uni-stuttgart.de/mlr/wp-content/uploads/2013/11/04-FunctionApproximation.pdf
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Learning how to ride a bicycle

Lagoudakis & Parr, JMLR 2003
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Learning how to ride a bicycle

Lagoudakis & Parr, JMLR 2003
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Application: robot learning in joint-space

I learn a model for accurate control in joint-space

I if we could map states to the required actions, this could be
executed on the robot immediately:
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Application: model-based robot motion

I learn a model for accurate control in joint-space
I compare with traditionally modeled solution
I compliant, low-gain control of fast and accurate motions

Nguyen-Tuong Peters, IROS 2008

N. Hendrich 93



University of Hamburg

MIN Faculty

Department of Informatics

Learning in Policy Space Reinforcement Learning (3)

Learning a forward model

1 learn an forward model of the system dynamics

2 use an optimal-control model to derive the policy
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Apprenticeship Learning

I learning from a teachers’ demonstration
I demonstration on the target system
I demonstration on another system
I with or without model of the target system

I one of the hot topics in RL today

I several recent examples: robot table-tennis playing,
autonomous car-driving, helicopter aerobatics

I aka inverse RL: given a demonstration (= policy), derive the
teachers’ reward function, then reproduce on the target system
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Apprenticeship Learning: Motivation

I see original paper
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Current Research Areas

I hierarchical reinforcement learning
I inverse RL: learning from demonstrations

I introduction to inverse RL
I inverse RL vs. behavioral cloning
I IRL algorithms

I learning high-DOF problems (humanoids ≈ 70-DOF)

I combining learning and planning

N. Hendrich 97



University of Hamburg

MIN Faculty

Department of Informatics

Inverse Reinforcement Learning Reinforcement Learning (3)

Inverse RL: informal definition

Given:

measurements of an agent’s behaviour π over time (st , at , s
′
t),

possibly, the transition model T (s, a, s ′).

not given: the reward model.

Goal: find the reward funtion Rπ(s, a, s ′)
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Inverse RL: big picture

Expert's Demonstration

RL Agent

Dynamics Model

Imitation/Apprenticeship
Learning

Reward Function

Inverse RL

Policy
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Inverse RL: problem formulation

Given:
I state space S , action space A
I transition model T (s, a, s ′) = P(s ′|s, a)
I not given reward function R(s, a, s ′)
I teacher’s demonstration (from teacher’s policy π∗):

s0, a0, s1, a1, . . . ,

Inverse Reinforcement Learning (IRL):
I recover R

Apprenticeship learning via IRL:
I use R to compute a good policy π

Behaviour cloning:
I using supervised learning to learn the teacher’s policy
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IRL vs. Behavioral cloning

I behavioral cloning: formulated as a supervised learning problem
(e.g. using SVM, NN, deep learning, . . . )
I given (s0, a0), (s1, a1), . . . generate from a policy π∗

I estimate a policy mapping from s to a

I this can only mimic the demonstrated trajectories of the
teacher
I can not change goal/destination
I can not handle non-Markovian enviroment

I IRL vs. behaviour cloning is R∗ vs π∗.
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Inverse RL: mathematical formulation

Given:

I state space S , action space A

I transition model T (s, a, s ′) = P(s ′|s, a)

I not given reward function R(s, a, s ′)

I teacher’s demonstration (from teacher’s policy π∗):
s0, a0, s1, a1, . . . ,

Find reward function R such that

E

[ ∞∑
t=0

γtR∗(st)|π∗
]
≥ E

[ ∞∑
t=0

γtR∗(st)|π
]
, ∀π
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Inverse RL: problems

Find reward function R such that

E

[ ∞∑
t=0

γtR∗(st)|π∗
]
≥ E

[ ∞∑
t=0

γtR∗(st)|π
]
, ∀π

I R = 0 is a solution for this equation . . .

I solution is not unique, multiple R∗ can satisfy the equation

I teacher’s π∗ in only given partially, so unclear how to evaluate
the expectation terms.
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Applications
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Summary: Reinforcement Learning

I agent in a (known or unknown) environment

I agent takes actions, receives a scalar reward

I learn a policy that maximizes accumulated reward

I learn how to avoid bad parts of the state-space

I in-between unsupervised and supervised learning

I learn how to reach delayed rewards

I exploration vs. exploitation dilemma

I very general setup, many application areas

N. Hendrich 106



University of Hamburg

MIN Faculty

Department of Informatics

Recap Reinforcement Learning (3)

Markov Decision Process

I MDP:
I states s ∈ S
I actions a ∈ A(s)
I immediate reward r after taking action a in state s
I transition probabilities Pa

ss′

I reward probabilities Ra
ss′

I accumulated return Rt =
∑t

i=0 γ
i ri

I Markov property/assumption

I goal: maximize return R

I sub-goal: learn policy π that leads to good actions
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Value functions

I assigning values to states: estimation of future rewards
I V (s) state value function
I Q(s, a) state-action value function

I Bellman equation: relating V (s) to V (s ′)
I backup-operations based on the Bellman equation

I optimal value-functions V ∗(s) and Q∗(s, a)

I greedy policy π∗ derived from V ∗ is optimal
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Algorithms

I Dynamic Programming

I Policy evaluation and policy iteration

I Monte-Carlo methods

I Temporal-Difference idea, SARSA and Q-learning

I TD(λ) methods

I combining value-functions with function approximation

I direct policy search methods
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